首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Occurrence of two distinct succinate thiokinases in animal tissues   总被引:3,自引:0,他引:3  
Although succinate thiokinase from mammalian sources has hitherto been described as showing substrate specificity for guanine nucleotide, a range of mammalian tissues has here been found to display succinate thiokinase activity with both guanine and adenine nucleotides as substrates. Evidence is presented for the existence of two distinct succinate thiokinases and this is confirmed by their separation by affinity chromatography. Each enzyme is specific for one nucleotide and is inhibited by the non-substrate nucleotide. The physiological roles of the two enzymes is yet to be established.  相似文献   

2.
The nucleotide specificity of succinate thiokinases, isolated from Escherichia coli, Aerobacter aerogenes, and Pseudomonas citronellolis, was determined and found to be nonspecific for adenine and 6-oxopurine nucleotides, guanine, and hypoxanthine. The enzyme from Herellae vaginicola was specific for the 6-oxopurine nucleotides. Succinate thiokinases from E. coli, A. aerogenes, and P. citronellolis also demonstrated purine nucleoside diphosphokinase activity (P-NDPK), which was 4, 9, and 40%, respectively, of the succinate thiokinase activity. P-NDPK activity was slightly stimulated by coenzyme A (CoA) and slightly inhibited by succinate; in the presence of both CoA and succinate, P-NDPK activity increased three-, three-, and sevenfold for the E. coli, A. aerogenes, and P. citronellolis enzymes, respectively. Isoelectric focusing demonstrated multiple forms of each enzyme, and the molecular weights of the A. aerogenes, P. citronellolis, and H. vaginicola enzymes were approximately 155,000.  相似文献   

3.
4.
5.
6.
7.
Two different membrane-bound enzymes oxidizing D-sorbitol are found in Gluconobacter frateurii THD32: pyroloquinoline quinone-dependent glycerol dehydrogenase (PQQ-GLDH) and FAD-dependent D-sorbitol dehydrogenase (FAD-SLDH). In this study, FAD-SLDH appeared to be induced by L-sorbose. A mutant defective in both enzymes grew as well as the wild-type strain did, indicating that both enzymes are dispensable for growth on D-sorbitol. The strain defective in PQQ-GLDH exhibited delayed L-sorbose production, and lower accumulation of it, corresponding to decreased oxidase activity for D-sorbitol in spite of high D-sorbitol dehydrogenase activity, was observed. In the mutant strain defective in PQQ-GLDH, oxidase activity with D-sorbitol was much more resistant to cyanide, and the H(+)/O ratio was lower than in either the wild-type strain or the mutant strain defective in FAD-SLDH. These results suggest that PQQ-GLDH connects efficiently to cytochrome bo(3) terminal oxidase and that it plays a major role in L-sorbose production. On the other hand, FAD-SLDH linked preferably to the cyanide-insensitive terminal oxidase, CIO.  相似文献   

8.
The neo-T4 syndrome was induced by subcutaneous administration of a total dose of (150 micrograms) L-thyroxine (T4) to rats from their first day of live. Neo-T4 animals and their controls were sacrificed at 2, 4, 8, 11, 14, 22 and 25 days of age. A decrease in body weight was observed from the second day of life, and a decrease in brain weight from the eighth day of life in the neo-T4 animals. Blood glucose and plasma insulin levels were decreased from 2nd day through 22nd day of life. Total plasma ketone bodies and beta-OH butyrate levels increased in the neo-T4 animals with respect to controls. until 8th day, although acetoacetate increased only until 4th day. The activity of key enzymes in the ketone bodies utilization pathway (3-hydroxybutyrate dehydrogenase, 3-oxoacid CoA-transferase and acetoacetyl-CoA thiolase) were also measured in the animals brain. We found an activation of 3-hydroxybutyrate dehydrogenase until 11th day and 3-oxoacid CoA-transferase until 14th day, but no change in acetoacetyl CoA-thiolase was observed. Ketone bodies play a key role as energy substrates and precursors of brain lipids during the period of intense growth and myelination of the CNS. Considering the alterations described in this paper it seems that neo-T4 syndrome could be an interesting model for studying metabolism of those substances in brain.  相似文献   

9.
We report the low temperature carbon monoxide recombination kinetics after photolysis and the temperature dependence of the visible absorption spectra of the isolated alpha SH-CO and beta SH-CO subunits from human hemoglobin A in ethylene glycol/water and in glycerol/water mixtures. Kinetic measurements on sperm whale (Physeter catodon) myoglobin and previously published optical spectroscopy data on the latter protein and on human hemoglobin A, in both solvents, (Cordone, L., A. Cupane, M. Leone, E. Vitrano, and D. Bulone. 1988. J. Mol. Biol. 199:312-218) are taken as reference. Low temperature flash photolysis data are analyzed within the multiple substates model proposed by Frauenfelder and co-workers (Austin, R. H., K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. 1975. Biochemistry. 14:5355-5373). Within this model a distribution of activation enthalpies for ligand binding accounts for the structural heterogeneity of the protein, while the preexponential factor, containing also the entropic contribution to the free energy of the process, is considered to be constant for all conformational substates. Optical spectra are deconvoluted in gaussian components and the temperature dependence of the moments of the resulting bands is analyzed, within the harmonic Frank-Condon approximation, to obtain information on the stereodynamic properties of the heme pocket. The kinetic and spectral parameters thus obtained are found to be protein dependent also with respect to their sensitivity to changes in the composition of the external medium. A close correlation between the kinetic and spectral features is observed for the proteins examined under all experimental conditions studied. The results reported are discussed in terms of differences in the heme pocket structure and in the conformational heterogeneity among the various proteins, as related to their different capability to accommodate constraints imposed by the external medium.  相似文献   

10.
11.
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2) and play a key role in the energy metabolism of microorganisms in anaerobic environments. The hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which assimilates organic carbon coupled with the reduction of elemental sulfur (S0) or H2 generation, harbors three gene operons encoding [NiFe]-hydrogenase orthologs, namely, Hyh, Mbh, and Mbx. In order to elucidate their functions in vivo, a gene disruption mutant for each [NiFe]-hydrogenase ortholog was constructed. The Hyh-deficient mutant (PHY1) grew well under both H2S- and H2-evolving conditions. H2S generation in PHY1 was equivalent to that of the host strain, and H2 generation was higher in PHY1, suggesting that Hyh functions in the direction of H2 uptake in T. kodakarensis under these conditions. Analyses of culture metabolites suggested that significant amounts of NADPH produced by Hyh are used for alanine production through glutamate dehydrogenase and alanine aminotransferase. On the other hand, the Mbh-deficient mutant (MHD1) showed no growth under H2-evolving conditions. This fact, as well as the impaired H2 generation activity in MHD1, indicated that Mbh is mainly responsible for H2 evolution. The copresence of Hyh and Mbh raised the possibility of intraspecies H2 transfer (i.e., H2 evolved by Mbh is reoxidized by Hyh) in this archaeon. In contrast, the Mbx-deficient mutant (MXD1) showed a decreased growth rate only under H2S-evolving conditions and exhibited a lower H2S generation activity, indicating the involvement of Mbx in the S0 reduction process. This study provides important genetic evidence for understanding the physiological roles of hydrogenase orthologs in the Thermococcales.  相似文献   

12.
13.
The activity of SDG, Na, K-ATPase and Mg-ATPase of the grass frog was determined in January, March and May, the number of animals examined being 30-40 in either series of experiments. In May (period of reproduction) the average activity of the above enzymes was higher than in January and March. This was observed both in males and females. A correlation between enzymatic activities of each single organism in March and May significantly increased. The role of these changes in the increase of viability of the organism is discussed.  相似文献   

14.
The mammalian mitochondrial complex consisting of elongation factors EF-Tu and EF-Ts (EF-Tu.Tsmt) is capable of efficiently binding aminoacyl-tRNA to the ribosome in the presence and absence of guanine nucleotides. In the presence of GTP the binding reaction is catalytic. In the absence of guanine nucleotides, or in the presence of a non-hydrolyzable GTP analog, only one round of ribosome binding occurs. EF-Tu.Tsmt is capable of forming a ternary complex with GTP and Escherichia coli Phe-tRNA as demonstrated by gel filtration chromatography, nitrocellulose filter binding, and by protection of the aminoacyl-tRNA bond from hydrolysis. GDP and the non-hydrolyzable GTP analog guanyl-5'-yl imidodiphosphate are also capable of facilitating ternary complex formation with EF-Tu.Tsmt, but are less effective. No kinetic advantage results from the formation of this ternary complex prior to ribosome binding, and EF-Tu.Tsmt may actually bind aminoacyl-tRNA directly to the ribosome prior to binding GTP. These results suggest that a variation of the prokaryotic elongation cycle is occurring in animal mitochondria. N-Ethylmaleimide inhibits the activity of EF-Tu.Tsmt in polymerization and in ribosome binding. However, the activity of the EF-Tsmt which can be measured independently, is not altered.  相似文献   

15.
There are two divergent fructokinase isozymes, Frk1 and Frk2 in tomato (Lycopersicon esculentum Mill.) plants. To investigate the physiological functions of each isozyme, the expression of each fructokinase mRNA was independently suppressed in transgenic tomato plants, and the respective phenotypes were evaluated. Suppression of Frk1 expression resulted in delayed flowering at the first inflorescence. Suppression of Frk2 did not effect flowering time but resulted in growth inhibition of stems and roots, reduction of flower and fruit number, and reduction of seed number per fruit. Localization of Frk1 and Frk2 mRNA accumulation by in situ hybridization in wild-type tomato fruit tissue indicated that Frk2 is expressed specifically in early tomato seed development. Fruit hexose and starch content were not effected by the suppression of either Frk gene alone. The results collectively indicate that flowering time is specifically promoted by Frk1 and that Frk2 plays specific roles in contributing to stem and root growth and to seed development. Because Frk1 and Frk2 gene expression was suppressed individually in transgenic plants, other significant metabolic roles of fructokinases may not have been observed if Frk1 and Frk2 play, at least partially, redundant metabolic roles.  相似文献   

16.
17.
18.
19.
20.
The synapsins are a family of neuron-specific proteins, associated with the cytoplasmic surface of synaptic vesicles, which have been shown to regulate neurotransmitter release in mature synapses and to accelerate development of the nervous system. Using neuronal cultures from mice lacking synapsin I, synapsin II, or both synapsins I and II, we have now found that synapsin I and synapsin II play distinct roles in neuronal development. Deletion of synapsin II, but not synapsin I, greatly retarded axon formation. Conversely, deletion of synapsin I, but not synapsin II, greatly retarded synapse formation. Remarkably, the deletion of both synapsins led to partial restoration of the wild phenotype. The results suggest that the synapsins play separate but coordinated developmental roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号