首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gram-negative bacteria stained with crystal violet are decolorized by 95% alcohol within 2 min, whereas Gram-positive bacteria require at least 3 min treatment. Aqueous solutions of safranin, neutral red, and fuchsin replace crystal violet from stained Gram-positive bacteria more quickly than alcohol alone, and alcoholic solutions of these counterstains are in most cases still more effective. Treatment of crystal viokt-stained organisms with alcoholic safranin (0.25%) for 15 scc will distinguish Gram-positive bacteria (viokt) from Gram-negative bacteria (pink).

Alcohol containing very low concentrations of iodine generally decolorizes crystal violet-stained Gram-positive bacteria more quickly than alcohol alone. Increasing concentrations of iodine in alcohol reduce the rate of decolorization of stained bacteria, but stained Gram-negative bacteria are still readily dccolorized. The addition of 0.1% iodine to alcohol increases the rate of extraction of crystal violet by alcohol from Gram-negative organisms, but delays extraction of dye from Gram-positive organisms, and this applies when counterstain is also present. A two-solution modification of Gram staining is described in which crystal violet-stained bacteria are treated with an alcoholic solution of safranin, fuchsin, and iodine.  相似文献   

2.
Thick smears of yeasts are dried, crushed between slides or cover-slips, stained with anilin crystal violet 11/2 minute, Lugol's iodine solution 2 minutes, decolorized in undiluted anilin oil, and counterstained with 1% aqueous safranin. Photomicrographs are given of crushed yeasts, thus stained, which show a Gram-positive outer layer and a Gram-negative inner substance.  相似文献   

3.
Solubilities of dye-iodine precipitates in alcohol and in aqueous safranin solution were determined by direct solubility methods and by photocolorimetric methods. It was found that, increasing precipitate solubility in alcohol or safranin solution gave decreasing differentiation between Gram-positive and Gram-negative bacteria. Dyes which did not stain the cells well as a primary stain did not give good Gram stains, regardless of the solubilities of their precipitates. Some dyes (typified by methylene blue) which gave relatively alcohol-insoluble iodine precipitates gave inferior Gram differentiation because these precipitates were readily soluble in the safranin counterstain.

Solubilities of precipitates of crystal violet and various iodine substitutes were determined photocolorimetrically. The ability of a substance to replace iodine in the Gram stain correlated with its ability to give a precipitate which was only slightly soluble in alcohol and relatively insoluble in aqueous safranin solution.

It was concluded that the usual Gram reagents are not truly specific for the differentiation. Any dye and mordant could be used if the dye was deeply colored, stained the cells well, and if the precipitate of dye and mordant was only slightly soluble in alcohol and relatively insoluble in the counterstain. These factors, combined with those influencing differences in cell membrane permeability, constitute the most important factors in the Gram stain differentiation.

Studies were made concerning the ability of dyes to substitute for crystal violet in the Gram procedure. Of 29 dye samples reported on here for the first time none proved to be good substitutes for crystal violet.  相似文献   

4.
Results of a Gram staining procedure varied with modifications of each of the steps involved. The best Gram differentiation was obtained when crystal violet and iodine solutions of high concentrations were used, and when n-propyl alcohol was used as the decolorizer. The decolorization step must be carefully quantitated, and one of the most important variables observed was whether a slide was brought into the decolorizer wet, or dry. Dry slides took 6 to 12 times as long to decolorize as wet. Wash steps, following crystal violet, and following the decolorizer, also greatly influence results by causing Gram-positive organisms to appear to be Gram-negative. The results indicated that Gram-stain procedures should not be varied to suit the whims of individual operators, and that each step could be specifically defined both as to the reagent used, and the procedure to be followed.

The followng Gram procedure is recommended for heat-fixed bacterial smears on glass slides. Flood the slide with Hucker's crystal violet for 1 ruin. Wash for 5 sec by dipping into tap water running into a 250 ml beaker at a rate of 30 ml per sec Rinse off the excess water with Burke's iodine, flood the slide with this solution for 1 min, then wash 5 sec in tap water as above. Decolorize by passing the wet slide through 3 (75 × 25 mm) Coplin dishes containing n-propyl alcohol, decolorize 1 min in each dish for a total of 3 min. Wash 5 sec in tap water as above, rinse off the excess water with 0.25% safranin, then flood the slide with this solution for 1 min. Wash as above, blot dry, and examine. An alternate procedure for decolorization would be to use either 95% n-propyl alcohol or 95% ethyl alcohol, but shorten the decolorization time to 30 sec per dish for a total of 1.5 min. After 10 slides, the decolorizer in the first dish should be replaced by fresh. This dish is then placed last in the sequence, with dish No. 2 moved to the No. 1 position.  相似文献   

5.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be ''Gram-positive,'' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be ''Gram-negative.'' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

6.
Dyes of all major types were tested for their suitability as the primary dye in the Gram stain. When a counterstain was not used, some dyes of all types were found to differentiate Gram-positive from Gram-negative organisms. When a counterstain was used, these dyes were found to vary greatly in their suitability. Those dyes found to be good substitutes for crystal violet were: Brilliant green, malachite green, basic fuchsin, ethyl violet, Hoffmann's violet, methyl violet B, and Victoria blue R. All are basic triphenylmethane dyes. Acid dyes were generally not suitable. Differences in the reaction of Gram-positive and Gram-negative cells to Gram staining without the use of iodine were observed and discussed but a practical differentiation could not be achieved in this manner. Certain broad aspects of the chemical mechanism of dyes in the gram stain are discussed.  相似文献   

7.
Fifty-five reagents were studied as to their ability to replace iodine in the Gram stain. None gave results as good as iodine. Eight gave usable Gram preparations, and forty-seven gave negative results. Omission of the counterstain resulted in increasing to thirty-three the number of reagents giving differentiation, but this, was not considered a true Gram differentiation. Many oxidizing agents were shown not to be substitutes for iodine; therefore the function of iodine must be more than to serve as an oxidizing agent. Many reagents which formed precipitates with the dye could not replace iodine; therefore factors other than precipitate formation must be involved. However, all agents which were good substitutes for iodine were both good oxidizing and dye precipitating agents. Experiments involving the study of cell membrane permeability showed that Gram-positive cells were less permeable to iodine in alcoholic solution than Gram-negative cells. This difference could not be demonstrated for iodine in aqueous solution. It was concluded that iodine served to form a dye-iodine precipitate (or complex) in the cell. Since Gram-positive cells were less permeable to iodine in alcohol than Gram-negative cells, this resulted in a slower dissolving out of this complex from Gram-positive cells during de-colorization and hence a slower decolorization time. The relative solubilities of dye precipitates in alcohol and in aqueous safranin solution were also indicated as an important factor influencing decolorization. Dyes which formed highly soluble precipitates with iodine could not be used in the Gram stain. It is not proposed that the mechanism of the Gram stain is entirely one of membrane permeability; chemical factors are undoubtedly important and will be discussed in a later paper. However, it is proposed that the chemical and physical factors are closely interrelated in the Gram stain mechanism.  相似文献   

8.
In perfecting the modification of the Gram-stain previously proposed, the following points are of interest:

1. Acetone is too strong a decolorizer for Gram-positive organisms and alcohol too weak for Gram-negative organisms. Consequently, it is now recommended that equal parts of acetone (100% c.p.) and ethyl alcohol (95%) be used as a decolorizing agent. The time of application should not ordinarily exceed 10 seconds.

2. Aqueous basic fuchsin (0.1%) serves as a strongly contrasting counterstain. Prolonged application renders Gram-positive organisms doubtful or Gram-negative, while short application renders Gram-negative organisms doubtful or Gram-positive. Twenty (20) seconds is therefore recommended as the time of application of the counterstain.

3. The method here described, with due regard for its limitations, is of value in Gram-staining pure or mixed cultures as well as for organic materials, such as Acidophilus milk, feces, etc., either for research purposes or classroom use. The method is as follows:

Air-dry film and fix with least amount of heat necessary.

Flood with dye for 5 minutes. Previously mix 30 drops of a 1% aqueous solution of crystal violet or methyl violet 6B with 8 drops of a 5% solution of sodium bicarbonate. Allow the mixture to remain for 5 minutes or more.

Flush with iodine solution for 2 minutes. Two grams iodine dissolved in 10 cc. normal sodium hydroxide solution and 90 cc. water added.

Drain without blotting but do not allow film to dry.

Add a mixture of equal parts of acetone and alcohol drop by drop until the drippings are colorless. (10 seconds or less.)

Air-dry slide.

Counterstain for 20 seconds with 0.1% aqueous solution of basic fuchsin.

Wash off excess stain by short exposure to tap water and air-dry. If slide is not clear immersion in xylol is recommended.  相似文献   

9.
A number of inhibitor systems which have been reported to allow selection of Gram-negative bacteria were tested against Gram-positive and Gram-negative isolates of dairy origin. No one system worked perfectly. A mixture of crystal violet-penicillin-nisin or monensin had least inhibitory effect on Gram-negative isolates whereas Selectocult (a commercially available mixture of Benzalkon A 50% and crystal violet) and sodium deoxycholate were the most effective inhibitors of Gram-positive bacteria. Cetrimide-fucidin-cephaloridine solutions, which have been reported as allowing selective growth of pseudomonads, were not so specific when applied to milk systems.  相似文献   

10.
A number of inhibitor systems which have been reported to allow selection of Gram-negative bacteria were tested against Gram-positive and Gram-negative isolates of dairy origin. No one system worked perfectly. A mixture of crystal violet-penicillin-nisin or monensin had least inhibitory effect on Gram-negative isolates whereas Selectocult (a commercially available mixture of Benzalkon A 50% and crystal violet) and sodium deoxycholate were the most effective inhibitors of Gram-positive bacteria. Cetrimide-fucidin-cephaloridine solutions, which have been reported as allowing selective growth of pseudomonads, were not so specific when applied to milk systems.  相似文献   

11.
Summary Crystal violet from Gram stained S. aureus can be extracted completely by 95% ethanol if the stained bacteria is pre-treated with dilute sodium thiosulphate solution. Thiosulphate removes iodine form the cell component-dye-iodine complex instantaneously and renders the dye extractable by the differentiating medium. 11 alcoholic solutions of aniline, dimethyl aniline, nitro-benzene, benzene, toluene or xylol can also extract the color from the stained S. aureus; the extraction with the first three solvents is almost exhaustive while with the latter solvents extraction is appreciable but incomplete. These solvents can form charge-transfer complexes with iodine. The findings indicate that the stability of the cell component-dye-iodine complex determines the Gram-character of the cell. A model hasbeen presented for the Gram cell component-dye-iodine complex.  相似文献   

12.
A new method of differentiating safranin in pollen-mother-cell smears and paraffin sections is described in detail. Slides stained in safranin are dehydrated in a series of alcoholic solutions containing 1.5% picric acid with constantly decreasing percentages of water. Differentiation is principally effected in 83% alcohol containing 1.5% picric acid and completed in the final dehydration and clearing. Counterstains may be applied in clove oil if desired.  相似文献   

13.
A modification of the Gram stain in which iodine-alcohol is substituted for 95% alcohol as a decolorizing agent has been found particularly useful in staining Gram-positive organisms in tissues and also for smears. The technic for tissue sections follows:
  1. Apply nuclear stain.
  2. Wash.
  3. Stain in Hucker's gentian violet 2 to 3 minutes (i. e. 1 part Sat. Alc. Sol. crystal violet to 4 parts 1% Aqu. Sol. ammonium oxalte).
  4. Wash in water.
  5. Stain in Gram's iodine 5 minutes.
  6. Wash in water.
  7. Decolorize in 95% alcohol to which enough tincture of iodine has been added to give a mahogany color.
  8. Counterstain.
  9. Dehydrate and mount.
  相似文献   

14.
New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.  相似文献   

15.
The staining method developed by Christian Gram was introduced as a simple and highly selective tool for demonstrating myxosporean and coccidian sporogonic stages. When using standard blood staining procedures for those enigmatic parasites it is sometimes difficult to distinguish them from fish host tissue. They clearly exhibit a partial Gram-positive reaction in histological sections, but staining is variable in air dried fish organ imprints. To visualize the Gram-negative background of different host tissue components in histological sections, the conventional safranin counterstain of the Gram protocol may be modified as follows: after application of 2% crystal violet (basic violet 3) and Lugol's solution, sections are stained with 0.1% nuclear fast red-5% aluminum sulfate and 0.35% aniline blue (acid blue 22) dissolved in saturated aqueous picric acid. Replacement of the Gram-specific dye crystal violet with 2% malachite green gave similar results in organ imprints containing myxospores or coccidia, but only in sections containing myxosporea. Staining for 1 min with an aqueous solution of 0.5% malachite green and followed 1 min washing was sufficient for rapidly demonstrating the parasite spores in organ imprints of both myxosores and oocysts. With regard to the role of acid mucopolysaccharides and other carbohydrates in the Gram reaction of spores, alcian blue 8GX staining was compared to the binding of FITC-labeled WGA, GS I and GS II. Each lectin was applied at 20 μl/ml PBS, HEPES for 1 hr. Whereas WGA yielded a nonspecific pattern like the alcian blue staining, GS II resulted in a pattern similar to the Gram staining results. This binding was weak in untreated specimens, but was significantly enhanced when digested first within trypsin overnight in a humid chamber at 37 °C. The binding of GS II to both myxosporidian and coccidian spores suggests that they are both composed of polymers containing N-acetyl-D-glucosamine residues. Furthermore, the results suggest that this hexosamine plays a key role in the Gram reaction.  相似文献   

16.
Actinomyces hyphae imbedded in the middle lamellae of potato tuber cells may be stained in sections by the use of a modified Gram's stain. The modifications are: a very strong (5%) solution of crystal violet in anilin oil; a 24-hour exposure to both the dye and the iodine solution; and a slow decolorization in absolute alcohol until no more color flows.  相似文献   

17.
This technic for the simultaneous demonstration of several different tissue components works equally well on invertebrate and vertebrate tissue if they have been treated with nonchromate fixatives Sections 4-7 μ thick are stained 30 min in 1% Alcian blue, then treated with alkaline alcohol for 2 hr. They are stained in Verhoeff's hematoxylin for 4-6 hr, and rinsed in alcohol; stained in woodstain scarlet-acid fuchsin for 3 min, decolorized in 5% phosphotungstic acid for 20 min and finally stained 5-8 min in alcoholic saffron. Collagen and bone are stained yellow; elastin, myelin and nucleic acids, purple to black; muscle, chitin, cytoplasm, fibrinoid and acid secretion, bright red to lavender; ground substances and mucus, blue-green. Fibrous connective tissue, cartilage, bone and glandular epithelia are exceptionally well demonstrated by this method. Slides stained in this manner are well suited for color photomicrography and as demonstrations in the classroom.  相似文献   

18.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be 'Gram-positive,' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be 'Gram-negative.' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

19.
A differential Gram stain has been evolved which incorporates the combined features of the original Gram and Pappenheim methods. National Aniline crystal violet and new methyl green and pyronin are the dyes preferred. The iodine mixture of Kopeloff and Beerman is a satisfactory mordant and Merck's pure technical acetone is an excellent differentiating agent. A system is established by means of the dyes and reagents which form a physicochemical equilibrium, provided pure dyes are employed, and the technic is carried out with precision. Gram-positive bacteria are coated by means of buffered crystal violet solution and the iodine-sodium hydroxide solution precipitates the crystal violet from other substances. The dye-iodine precipitate is readily dissolved by pure acetone. Iodine green, a pure derivative of crystal violet has the effect of noninterference in the technic and has selective action upon nuclear substance. Pyronin has affinity for Neisserian organisms primarily and acts as an inert substance upon most other proteins, (except cytoplasm of eosinophils, lymphocytes, plasma cells, and endothelial cells). The following technic is recommended:

Stain air-dry films 3 to 5 minutes in a 1% solution of crystal violet in 10 parts of Clark and Lubs' phosphate buffer of pH 6.6 to 7.0 and 90 parts water. Decant and flush with 2% iodine in N/10 NaOH. Decant and decolorize in acetone 10 seconds or less. Air dry and counterstain 1 1/2 to 2 minutes with methyl-green-pyronin (2 parts 2% aqueous methyl green National with one part 0.3% aqueous pyronin yellowish). Wash and air dry. Oil of Bergamot is preferable to xylene as a clearing agent. Best results are obtained if each slide is handled separately as for staining blood films.  相似文献   

20.
Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5μg/ml crystal violet, 5.0 μg/ml daptomycin, and 5.0μg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号