首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
"Candidatus Liberibacter asiaticus" is a psyllid-transmitted, phloem-limited alphaproteobacterium and the most prevalent species of "Ca. Liberibacter" associated with a devastating worldwide citrus disease known as huanglongbing (HLB). Two related and hypervariable genes (hyv(I) and hyv(II)) were identified in the prophage regions of the Psy62 "Ca. Liberibacter asiaticus" genome. Sequence analyses of the hyv(I) and hyv(II) genes in 35 "Ca. Liberibacter asiaticus" DNA isolates collected globally revealed that the hyv(I) gene contains up to 12 nearly identical tandem repeats (NITRs, 132 bp) and 4 partial repeats, while hyv(II) contains up to 2 NITRs and 4 partial repeats and shares homology with hyv(I). Frequent deletions or insertions of these repeats within the hyv(I) and hyv(II) genes were observed, none of which disrupted the open reading frames. Sequence conservation within the individual repeats but an extensive variation in repeat numbers, rearrangement, and the sequences flanking the repeat region indicate the diversity and plasticity of "Ca. Liberibacter asiaticus" bacterial populations in the world. These differences were found not only in samples of distinct geographical origins but also in samples from a single origin and even from a single "Ca. Liberibacter asiaticus"-infected sample. This is the first evidence of different "Ca. Liberibacter asiaticus" populations coexisting in a single HLB-affected sample. The Florida "Ca. Liberibacter asiaticus" isolates contain both hyv(I) and hyv(II), while all other global "Ca. Liberibacter asiaticus" isolates contain either one or the other. Interclade assignments of the putative Hyv(I) and Hyv(II) proteins from Florida isolates with other global isolates in phylogenetic trees imply multiple "Ca. Liberibacter asiaticus" populations in the world and a multisource introduction of the "Ca. Liberibacter asiaticus" bacterium into Florida.  相似文献   

2.
The chromosome sequence of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A), associated with dieback in papaya, Australian grapevine yellows in grapevine, and several other important plant diseases, was determined. The circular chromosome is represented by 879,324 nucleotides, a GC content of 27%, and 839 protein-coding genes. Five hundred two of these protein-coding genes were functionally assigned, while 337 genes were hypothetical proteins with unknown function. Potential mobile units (PMUs) containing clusters of DNA repeats comprised 12.1% of the genome. These PMUs encoded genes involved in DNA replication, repair, and recombination; nucleotide transport and metabolism; translation; and ribosomal structure. Elements with similarities to phage integrases found in these mobile units were difficult to classify, as they were similar to both insertion sequences and bacteriophages. Comparative analysis of "Ca. Phytoplasma australiense" with "Ca. Phytoplasma asteris" strains OY-M and AY-WB showed that the gene order was more conserved between the closely related "Ca. Phytoplasma asteris" strains than to "Ca. Phytoplasma australiense." Differences observed between "Ca. Phytoplasma australiense" and "Ca. Phytoplasma asteris" strains included the chromosome size (18,693 bp larger than OY-M), a larger number of genes with assigned function, and hypothetical proteins with unknown function.  相似文献   

3.
Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in 'on/off' status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.  相似文献   

4.
Promoter fragments of deoxyribonuclease II (DNAse II) and calcium-modulating cyclophilin ligand (CAML) associated with Alu family repeats have been inserted into luciferase reporter vectors. The constructs were introduced into A549 and HEK293 cell lines by transient transfection. Transfected cells were lysed to analyze luciferase activities. It has been shown that Alu repeats inserted into constructs influence the luciferase expression. Therefore, Alu copies associated with cis-regulatory modules in protein-coding genes have biological activity.  相似文献   

5.
The reproductive genes of fungi, like those of many other organisms, are thought to diversify rapidly. This phenomenon could be associated with the formation of reproductive barriers and speciation. Ascomycetes produce two classes of mating type-specific peptide pheromones. These are required for recognition between the mating types of heterothallic species. Little is known regarding the diversity or the extent of species specificity in pheromone peptides among these fungi. We compared the putative protein-coding DNA sequences of the 2 pheromone classes from 70 species of Ascomycetes. The data set included previously described pheromones and putative pheromones identified from genomic sequences. In addition, pheromone genes from 12 Fusarium species in the Gibberella fujikuroi complex were amplified and sequenced. Pheromones were largely conserved among species in this complex and, therefore, cannot alone account for the reproductive barriers observed between these species. In contrast, pheromone peptides were highly diverse among many other Ascomycetes, with evidence for both positive diversifying selection and relaxed selective constraint. Repeats of the α-factor-like pheromone, which occur in tandem arrays of variable copy number, were found to be conserved through purifying selection and not concerted evolution. This implies that sequence specificity may be important for pheromone reception and that interspecific differences may indeed be associated with functional divergence. Our findings also suggest that frequent duplication and loss causes the tandem repeats to experience "birth-and-death" evolution, which could in fact facilitate interspecific divergence of pheromone peptide sequences.  相似文献   

6.
Phylogenetic methods can produce biased estimates of phylogeny when base composition varies along different lineages. Pettigrew (1994, Curr. Biol. 4:277-280) has suggested that base composition bias is responsible for the apparent support for the monophyly of bats (Chiroptera: megabats and microbats) from several different nuclear and mitochondrial genes. Pettigrew's "flying DNA" hypothesis makes several predictions: (1) that metabolic constraints associated with flying result in elevated levels of adenine and thymine throughout the genome of both megabats and microbats, (2) that the resulting base compositional bias in bats is sufficient to mislead phylogenetic methods and account for the support for bat monophyly from several nuclear and mitochondrial genes, and (3) that phylogenetic analysis using pairwise distances corrected for compositional bias should eliminate the support for bat monophyly. We tested these predictions by analyzing DNA sequences from two nuclear and three mitochondrial genes. The predicted base compositional bias does not appear to exist in some of the genes, and in other genes the differences in AT content are very small. Analyses under a wide diversity of criteria and models of evolution, including analyses that take base composition into account (using log-determinant distances), all strongly support bat monophyly. Moreover, simulation analyses indicate that even extreme bias toward AT-base composition in bats would be insufficient to explain the observed levels of support for bat monophyly. These analyses provide no support for the "flying DNA" hypothesis, whereas the monophyly of bats appears to be well supported by the DNA sequence data.  相似文献   

7.
Qin L  Upton C  Hazes B  Evans DH 《Journal of virology》2011,85(24):13049-13060
Smallpox was eradicated using variant forms of vaccinia virus-based vaccines. One of these was Dryvax, a calf lymph vaccine derived from the New York City Board of Health strain. We used genome-sequencing technology to examine the genetic diversity of the population of viruses present in a sample of Dryvax. These studies show that the conserved cores of these viruses exhibit a lower level of sequence variation than do the telomeres. However, even though the ends of orthopoxviruses are more genetically plastic than the cores, there are still many telomeric genes that are conserved as intact open reading frames in the 11 genomes that we, and 4 genomes that others, have sequenced. Most of these genes likely modulate inflammation. Our sequencing also detected an evolving pattern of mutation, with some genes being highly fragmented by randomly assorting mutations (e.g., M1L), while other genes are intact in most viruses but have been disrupted in individual strains (e.g., I4L in strain DPP17). Over 85% of insertion and deletion mutations are associated with repeats, and a rare new isolate bearing a large deletion in the right telomere was identified. All of these strains cluster in dendrograms consistent with their origin but which also surprisingly incorporate horsepox virus. However, these viruses also exhibit a "patchy" pattern of polymorphic sites characteristic of recombinants. There is more genetic diversity detected within a vial of Dryvax than between variola virus major and minor strains, and our study highlights how propagation methods affect the genetics of orthopoxvirus populations.  相似文献   

8.
Three types of molecular markers have been compared for their utility in evaluating genetic diversity among cultivars of Hordeum vulgare. Restriction fragment length polymorphisms at 71 sites were scored with the aid of probes corresponding to stress-responsive genes from barley and wheat, coding for a low-molecular-weight heat shock protein, a dehydrin, an aldose reductase homolog, and a 18.9-kDa drought-induced protein of unknown function. Indexes of genetic diversity computed in the total sample and within groups of cultivars (two-rowed and six-rowed, winter and spring varieties) indicated high values of genetic differentiation ( F (ST) >15%). A second assessment of genetic diversity was performed by PCR amplification of genomic DNA using as primers 13 arbitrary oligonucleotides derived from sequences of the same stress-responsive genes. A high degree of polymorphism was uncovered using these markers also, but they yielded low values for F (ST) (<7%) among groups of cultivars. Finally, 15 different simple-sequence repeats (AC or AG) were amplified with primers based on unique flanking sequences. Levels of polymorphism and differentiation between groups of cultivars revealed by these markers were quite high. Ordination techniques applied to measures of genetic distance among cultivars demonstrated a remarkable ability of the RFLPs associated with stress-responsive genes to discriminate on the basis of growth habit. The correlation with production data for the cultivars in different environments was also significant. This "functional genomics" strategy was therefore as informative as the "structural genomics" (SSR-based) approach, but requires the analysis of fewer probes.  相似文献   

9.
Tetrachloroethene (PCE) and trichloroethene (TCE) are prevalent groundwater contaminants that can be completely reductively dehalogenated by some "Dehalococcoides" organisms. A Dehalococcoides-organism-containing microbial consortium (referred to as ANAS) with the ability to degrade TCE to ethene, an innocuous end product, was previously enriched from contaminated soil. A whole-genome photolithographic microarray was developed based on the genome of "Dehalococcoides ethenogenes" 195. This microarray contains probes designed to hybridize to >99% of the predicted protein-coding sequences in the strain 195 genome. DNA from ANAS was hybridized to the microarray to characterize the genomic content of the ANAS enrichment. The microarray results revealed that the genes associated with central metabolism, including an apparently incomplete carbon fixation pathway, cobalamin-salvaging system, nitrogen fixation pathway, and five hydrogenase complexes, are present in both strain 195 and ANAS. Although the gene encoding the TCE reductase, tceA, was detected, 13 of the 19 reductive dehalogenase genes present in strain 195 were not detected in ANAS. Additionally, 88% of the genes in predicted integrated genetic elements in strain 195 were not detected in ANAS, consistent with these elements being genetically mobile. Sections of the tryptophan operon and an operon encoding an ABC transporter in strain 195 were also not detected in ANAS. These insights into the diversity of Dehalococcoides genomes will improve our understanding of the physiology and evolution of these bacteria, which is essential in developing effective strategies for the bioremediation of PCE and TCE in the environment.  相似文献   

10.
It is well known that dopaminergic genes affect the development of attention deficit hyperactivity disorder (ADHD) in various populations. Many studies have shown that variable number tandem repeats (VNTRs) located within the 3′-untranslated region of DAT1 and in exon 3 of DRD4 are associated with ADHD development; however, these results were inconsistent. Therefore, we investigated the genetic association between two VNTRs and ADHD in Korean children. We determined the VNTRs using PCR. We examined genotype and allele frequency differences between the experimental and control groups, along with the odds ratios, using Chi square and exact tests. We observed a significant association between the children with ADHD and the control group in the 10R/10R genotype of DAT1 VNTRs (p?=?0.025). In addition, the 11R allele of DAT1 VNTRs showed a higher frequency in the control group than in the ADHD group (p?=?0.023). Also, the short repeat (without 11R) and long repeat alleles (including 11R) were associated with ADHD (p?<?0.05). The analysis of DRD4 VNTRs revealed that the 2R allele is associated with ADHD (p?=?0.025). A significant result was also observed in long and short repeats (p?<?0.05). Additionally, ADHD subtypes showed that the DRD4 VNTRs are associated with combined and hyperactive-impulsive subtype groups (p?<?0.05). Therefore, our results suggest that DAT1 VNTRs and DRD4 VNTRs play a role in the genetic etiology of ADHD in Korean children.  相似文献   

11.
Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability.  相似文献   

12.
MOTIVATION: Tandem repeats are associated with disease genes, play an important role in evolution and are important in genomic organization and function. Although much research has been done on short perfect patterns of repeats, there has been less focus on imperfect repeats. Thus, there is an acute need for a tandem repeats database that provides reliable and up to date information on both perfect and imperfect tandem repeats in the human genome and relates these to disease genes. RESULTS: This paper presents a web-accessible relational tandem repeats database that relates tandem repeats to gene locations and disease genes of the human genome. In contrast to other available databases, this database identifies both perfect and imperfect repeats of 1-2000 bp unit lengths. The utility of this database has been illustrated by analysing these repeats for their distribution and frequencies across chromosomes and genomic locations and between protein-coding and non-coding regions. The applicability of this database to identify diseases associated with previously uncharacterized tandem repeats is demonstrated.  相似文献   

13.
Generalized linear mixed model for segregation distortion analysis   总被引:1,自引:0,他引:1  

Background

Concerted evolution refers to the pattern in which copies of multigene families show high intraspecific sequence homogeneity but high interspecific sequence diversity. Sequence homogeneity of these copies depends on relative rates of mutation and recombination, including gene conversion and unequal crossing over, between misaligned copies. The internally repetitive intergenic spacer (IGS) is located between the genes for the 28S and 18S ribosomal RNAs. To identify patterns of recombination and/or homogenization within IGS repeat arrays, and to identify regions of the IGS that are under functional constraint, we analyzed 13 complete IGS sequences from 10 individuals representing four species in the Daphnia pulex complex.

Results

Gene conversion and unequal crossing over between misaligned IGS repeats generates variation in copy number between arrays, as has been observed in previous studies. Moreover, terminal repeats are rarely involved in these events. Despite the occurrence of recombination, orthologous repeats in different species are more similar to one another than are paralogous repeats within species that diverged less than 4 million years ago. Patterns consistent with concerted evolution of these repeats were observed between species that diverged 8-10 million years ago. Sequence homogeneity varies along the IGS; the most homogeneous regions are downstream of the 28S rRNA gene and in the region containing the core promoter. The inadvertent inclusion of interspecific hybrids in our analysis uncovered evidence of both inter- and intrachromosomal recombination in the nonrepetitive regions of the IGS.

Conclusions

Our analysis of variation in ribosomal IGS from Daphnia shows that levels of homogeneity within and between species result from the interaction between rates of recombination and selective constraint. Consequently, different regions of the IGS are on substantially different evolutionary trajectories.  相似文献   

14.
Genes containing multiple coding mini- and microsatellite repeats are highly dynamic components of genomes. Frequent recombination events within these tandem repeats lead to changes in repeat numbers, which in turn alters the amino acid sequence of the corresponding protein. In bacteria and yeasts, the expansion of such coding repeats in cell wall proteins is associated with alterations in immunogenicity, adhesion, and pathogenesis. We hypothesized that identification of repeat-containing putative cell wall proteins in the human pathogen Aspergillus fumigatus may reveal novel pathogenesis-related elements. Here, we report that the genome of A. fumigatus contains as many as 292 genes with internal repeats. Fourteen of 30 selected genes showed size variation of their repeat-containing regions among 11 clinical A. fumigatus isolates. Four of these genes, Afu3g08990, Afu2g05150 (MP-2), Afu4g09600, and Afu6g14090, encode putative cell wall proteins containing a leader sequence and a glycosylphosphatidylinositol anchor motif. All four genes are expressed and produce variable-size mRNA encoding a discrete number of repeat amino acid units. Their expression was altered during development and in response to cell wall-disrupting agents. Deletion of one of these genes, Afu3g08990, resulted in a phenotype characterized by rapid conidial germination and reduced adherence to extracellular matrix suggestive of an alteration in cell wall characteristics. The Afu3g08990 protein was localized to the cell walls of dormant and germinating conidia. Our findings suggest that a subset of the A. fumigatus cell surface proteins may be hypervariable due to recombination events in their internal tandem repeats. This variation may provide the functional diversity in cell surface antigens which allows rapid adaptation to the environment and/or elusion of the host immune system.  相似文献   

15.
Proteins that share even low sequence homologies are known to adopt similar folds. The beta-propeller structural motif is one such example. Identifying sequences that adopt a beta-propeller fold is useful to annotate protein structure and function. Often, tandem sequence repeats provide the necessary signal for identifying beta-propellers in proteins. In our recent analysis to identify cell surface proteins in archaeal and bacterial genomes, we identified some proteins that contain novel tandem repeats "LVIVD", "RIVW" and "LGxL". In this work, based on protein fold predictions and three-dimensional comparative modeling methods, we predicted that these repeat types fold as beta-propeller. Further, the evolutionary trace analysis of all proteins constituting amino acid sequence repeats in beta-propellers suggest that the novel repeats have diverged from a common ancestor.  相似文献   

16.
(TG:CA)(n) repeats in human housekeeping genes   总被引:1,自引:0,他引:1  
The unravelling of human genome sequence gives a new opportunity to investigate the role of repetitive sequences in gene regulation. Among the various types of repetitive sequences, the dinucleotide (TG:CA)(n) repeats are one of the most abundant in human genome and exhibit polymorphism. Early on, it was observed that the (TG:CA)(n) repeats could modulate gene expression and has the propensity to undergo conformational transitions in in vivo conditions. Recent reports describe the role of polymorphic (TG:CA)(n) repeats in gene regulation in several genes. In this work, we have analysed the distribution of (TG:CA)(n) (n >or= 6) repeats in human 'housekeeping genes' on which recently released Gene Chip data is available. Our results indicate that (i). The number of short intragenic (TG:CA)(n) repeats is significantly higher than the number of long repeats (ii). the proportion of genes with (TG:CA)(n) repeats (n >or= 12 units) had lower mean expression levels compared to those without these repeats, (iii). the genes belonging to the functional class of 'signalling and communication' had a positive association with repeats in contrast to the genes belonging to the 'information' class that were negatively associated with repeats.  相似文献   

17.
The antigenic mosaics of archaeal species are complex and lead to the distinction of different immunotypes. We began the dissection of the antigenic mosaic of the methanogen Methanosarcina mazei S-6 by gene cloning and sequencing. The analysis of the sequence, organization, and in vitro (heterologous) and in vivo expression of two three-gene clusters that encode proteins localized to the cell envelope and that are recognized by antibodies for surface structures is presented in this report. The amino acid sequences and compositions share characteristics with S-layer proteins and, most notably, have repeats of conserved sequences and secondary structures. Expressed genes produced proteins with a tendency to oligomerize, and one of these proteins was susceptible to breakdown at regular intervals. Altogether, the data reveal a modular system (clusters of homologous genes, proteins of similar sequences with conserved repeats) seemingly suitable for assembling an enormous variety of final molecular structures by rearranging and combining genes, proteins, and repeats, and thus generate the observed wide spectrum of antigenic diversity. Received: 26 June 1997 / Accepted: 5 November 1997  相似文献   

18.
18S-25S rDNA of intact plants and tissue cultures of G. acaulis, G. punctata, and G. lutea are studied by blot hybridization. A decrease in the number of repeats of ribosomal DNA by comparison with the plants is established in the callus tissues. Unlike other species, G. lutea exhibits intragenome heterogeneity of rRNA genes as well as qualitative changes in rDNA in tissue cultures, in particular, the appearance of altered repeats. It is suggested that there exists an association between these features of the structure of rRNA genes and their rearrangement in vitro.  相似文献   

19.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

20.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号