首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Administration of Ep459-asialofetuin conjugate (Ep459-AF) and pepstatin-asialofetuin conjugate (Ps-AF) to rats effectively inhibited lysosomal BANA hydrolase and cathepsin D in the liver, respectively, at a very low dose. Ep459-AF treatment also led to an accumulation of autolysosomes in rat liver. There was a close correlation between the accumulation of autolysosomes and the inhibition of BANA hydrolase activity. However, as opposed to the inhibition of thiol proteases, the inhibition of cathespin D did not cause accumulation of autolysosomes in the rat liver. These results suggest that autophagy in rat hepatocytes is a common occurrence under normal physiological conditions and that thiol proteases are digestive enzymes essential for the autolysomes.  相似文献   

2.
Plasma lipoproteins (and other ligands) are endocytosed by hepatocytes and appear in multivesicular bodies (MVBs) in the Golgi-lysosome region of the cell prior to their degradation. We have isolated MVB fractions from livers of estradiol-treated rats, permitting studies of their properties (Hornick et al. 1985). Here we report our cytochemical studies of lysosomal enzyme activity in partially and highly purified MVB fractions and in MVBs in hepatocytes in situ. Only about 15% of partially or highly purified MVBs were positive for acid phosphatase and arylsulfatase, consistent with the prelysosomal nature of this compartment. Partially purified MVB fractions contained small round vesicles, 70-120 nm in diameter, which stained intensely for these enzymes; occasionally these vesicles appeared to fuse with MVBs, suggesting that these structures are primary lysosomes. Such stained vesicles were rarely seen in highly purified MVB preparations. Acid phosphatase reaction product with cerium as capture reagent appeared as uniform precipitates surrounding endocytosed plasma lipoproteins in positively stained MVBs. Arylsulfatase reaction product, however, appeared as distinctive arc or plaque-like deposits just inside the MVB-limiting membrane, often in continuity with intense reaction product contained in a fusing primary lysosome. Similar putative primary lysosomes were occasionally observed in isolated, "intact" Golgi fractions from the same livers. Similar histochemical reactivities of MVBs and putative primary lysosomes were observed in thin sections of hepatocytes in situ. These observations support the conclusion that, in hepatocytes, MVBs represent the immediate prelysosomal compartment in the endocytic pathway of macromolecular catabolism, and suggest that MVBs are converted to secondary lysosomes by direct fusion with primary lysosomes arising from closely adjacent Golgi compartments.  相似文献   

3.
Substantial amounts of epidermal growth factor (EGF) are cleared from the circulation by hepatocytes via receptor-mediated endocytosis and subsequently degraded within lysosomes. We have used a combined biochemical and morphological approach to examine the fate of the receptor after exposure to EGF. Polyclonal antibodies were prepared against the purified receptor and their specificity established by immunoprecipitation and immunoblotting techniques. The EGF receptor was then localized by immunofluorescence and immunoperoxidase techniques and quantified on immunoblots. In untreated livers, EGF receptor was restricted to the sinusoidal and lateral surfaces of hepatocytes. 2-4 min after exposure of cells to EGF, the receptor was found in small vesicles (i.e., coated vesicles) as well as larger vesicles and tubules at the cell periphery. By 15 min the receptor was found in multivesicular endosomes located near bile canaliculi. Exposure of hepatocytes to EGF also resulted in a rapid loss of receptor protein from total liver homogenates and a decrease in its half-life from 8.7 h in control livers to 2.5 h. This EGF-induced loss of receptors was not observed when lysosomal proteinases were inhibited by leupeptin or when endosome/lysosome fusion was prevented by low temperature (16 degrees C). In the presence of leupeptin, receptor could be detected in structures identified as lysosomes using acid-phosphatase cytochemistry. All these results suggested rapid internalization of EGF receptors in response to ligand and degradation within lysosomes. However, four times more ligand was degraded at 8 h than the number of high-affinity (Kd of 8-15 nM) EGF-binding sites lost, suggesting either (a) high-affinity receptors were recycled, and/or (b) more than 300,000 receptors were available for EGF uptake. We identified and characterized a latent pool of approximately 300,000 low-affinity receptors (Kd approximately 200 nM) that could be separated on sucrose gradients from the plasma membrane pool of approximately 300,000 high-affinity receptors (Kd of 8-15 nM). Despite the differences in their binding affinities, the high- and low-affinity receptors appeared to be structurally identical and were both EGF-dependent protein kinases. In addition, the dynamics of the low-affinity receptors were consistent with a functional role in EGF uptake and delivery to lysosomes.  相似文献   

4.
We have used combinations of subcellular fractionation, specific cytochemical tracers, and quantitative immunoadsorption to determine when, where, and in which intracellular structure internalized asialoglycoproteins (ASGPs) are segregated from their receptor. All membrane vesicles containing the receptor (R+ vesicles) were quantitatively immunoadsorbed from crude microsomes with Staphylococcus aureus cells and affinity-purified anti-ASGP receptor. Using this assay, we varied the time and temperature of exposure of perfused livers to 125I-asialoorosomucoid (125I-ASOR) and followed the movement of ligand from R+ to R- vesicles. After 2.5 min at 37 degrees C, 98% of the internalized ligand could be immunoadsorbed and thus was in R+ vesicles. Over the next 12 min of continuous 37 degrees C perfusion with 125I-ASOR, an increasing fraction of the ligand was not immunoadsorbed and therefore was present in R- vesicles. A maximum of 30% of the ligand could be found in R- vesicles (14-44 min). When livers were maintained at 16 degrees C, ligand was internalized but remained in R+ vesicles. Furthermore, ligand accumulating in R- vesicles at 37 degrees C remained there when livers were cooled to 16 degrees C. R- endosomes could be separated from R+ endosomes by flotation on sucrose density gradients and visualized by the presence of sequestered ASOR-horseradish peroxidase (ASOR-HRP). These structures resembled those labeled by ASOR-HRP in situ: R+ vesicles were relatively dense (1.12 g/cc), frequently tubular or spherical and small (100-nm diam), corresponding to the peripheral and internal tubular endosomes; R- structures were of lower density (1.09 g/cc), large (400-nm diam), and resembled internal multivesicular endosomes (MVEs). Endocytosed ASOR-HRP was found in both the peripheral and internal tubular endosomes in situ under conditions where 95% of the ligand was present in R+ vesicles by immunoadsorption, whereas MVEs containing ASOR-HRP were predominant in situ when ligand was found in R- vesicles and were often in continuity with the tubular internal endosomes. All of these results suggest that complete segregation of ligand and receptor occurs after arrival in the Golgi-lysosome region of the hepatocyte and that MVEs are R- and represent the final prelysosomal compartment.  相似文献   

5.
The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.  相似文献   

6.
The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin.  相似文献   

7.
We used a lactose-substituted polystyrene, poly-N-p-vinylbenzyl-D-lactonamide (PVLA), as a substratum for adult rat hepatocytes in primary culture. Spherical-shaped hepatocytes attached on PVLA substratum formed stable multilayer aggregates anchored on substratum through the stimulation of epidermal growth factor (EGF). The cells required calcium ion essentially to form the aggregates. The formation of multilayer aggregates was inhibited by colchicine, but not by cytochalasin B. The inhibition was also observed by added PVLA molecules in the culture medium and by treating surfaces of PVLA-coated dishes with allo A lectin. It was suggested that adult rat hepatocytes attached on PVLA substratum required the specific interaction between asialoglycoprotein receptors on the cell surface and PVLA substratum to form anchored multilayer aggregates.  相似文献   

8.
Incubation of isolated rat hepatocytes with 10 mM methylamine resulted in an inhibition of endogenous protein degradation and a microscopically visible enlargement of the lysosomes. Lysosomes from methylamine-treated cells exhibited increased buoyancy in metrizamide gradients and increased fragility as measured by the release of acid phosphatase activity in vitro, despite the fact that no methylamine remained in the gradient-isolated organelles. When methylamine was extracted from intact cells, the inhibition of protein degradation was immediately relieved, whereas the lysosomal enlargement (and to a certain extent also the increased fragility) persisted for some time. The methylamine-induced osmotic swelling of the lysosomes would thus seem to involve not merely a passive stretching of the lysosomal membrane, but rather some structural change (e.g., an increased amount of membrane material) which is relatively slowly reversible, but without effect on lysosomal function.  相似文献   

9.
The intracellular transport and degradation of asialoorosomucoid (AOM) in isolated rat hepatocytes was studied by means of subcellular fractionation in Nycodenz gradients. The asialoglycoprotein was labelled by covalent attachment of a radioiodinated tyramine-cellobiose adduct ( [125I]TC) which leads to labelled degradation products being trapped intracellularly and thus serving as markers for the degradative organelles. The ligand was initially (1 min) in a slowly sedimenting (small) vesicle and subsequently in larger endosomes. Acid-soluble, radioactive degradation products were first found in a relatively light lysosome whose distribution coincided in the gradient with that of the larger endosome. Later (30 min) degradation products were found in denser lysosomes which banded in the same region of the gradient as the lysosomal enzyme, beta-acetylglucosaminidase. Colchicine, monensin and leupeptin all inhibited degradation of [125I]tyramine-cellobiose asialoorosomucoid ( [125I]TC-AOM) and reduced the formation of degradation products in both the light and the dense lysosomes. In presence of monensin and colchicine no undegraded ligand was seen in the dense lysosome, suggesting that uptake in these vesicles was inhibited. Leupeptin allowed accumulation of undegraded ligand in the dense lysosome. Therefore, transfer from light to dense lysosomes is not dependent on degradation as such. In the presence of monensin two peaks of undegraded ligand were found in the gradients. It seems possible that in the monensin-sensitive endosomes, dissociation of the ligand-receptor complex is inhibited, allowing ligand to recycle with the receptors in small vesicles.  相似文献   

10.
Effect of brefeldin A on the transport of lysosomal acid hydrolases (cathepsins D and H) was investigated in primary cultured rat hepatocytes. Both cathepsins were synthesized as proenzymes and progressively converted to mature enzymes in the control cells. However, BFA strongly inhibited the appearance of the mature enzymes in the cells in a dose dependent manner, suggesting that transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum to lysosomes is blocked by the drug. The inhibitory effect by brefeldin A was reversible. Upon recovery from brefeldin A-intoxication, procathepsin D was effectively targeted into lysosomes, whereas a substantial amount of procathepsin H was found to be missorted, resulting in its secretion into the culture medium.  相似文献   

11.
Rat hepatocytes treated with 1,4-benzoquinone formed 1,4-benzosemiquinone and 2-S-glutathionyl-1,4-benzosemiquinone radicals as detected by ESR spectroscopy. The 2-S-glutathionyl-1,4-benzosemiquinone radical was first obtained from the reaction of 1,4-benzoquinone with glutathione. Glutathione both reduced benzoquinone to form benzosemiquinone and conjugated benzoquinone to form 2-S-glutathionyl-1,4-benzosemiquinone radical. The ratio of these two radicals depended upon the ratio of 1,4-benzoquinone to glutathione. At near equimolar ratios, the 2-S-glutathionyl-1,4-benzosemiquinone radical was predominantly formed. This radical was characterized by computer simulation of the experimental spectra and identified by comparison of its hyperfine coupling constants with those of chemical analogues. The 2-S-glutathionyl-1,4-benzosemiquinone radicals formed inside hepatocytes, and then crossed the plasma membrane into the media.  相似文献   

12.
The purpose of the present study was to characterize the transport of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) into hepatocytes at physiological and pharmacological concentrations. Hepatocytes were isolated from female Sprague-Dawley rats by collagenase perfusion. Uptake of [3H]DHEA and [3H]DHEAS at increasing concentrations (3.5 nM-100 μM) was measured by the rapid filtration technique at 30 s intervals up to 120 s. The uptake of DHEAS by hepatocytes was saturable (Km = 17.0 μM; Vmax = 3.7 nmol/min/mg cell protein). In contrast, a specific saturable transport system for DHEA could not be detected in rat hepatocytes. It is suggested that DHEA enters the cell by diffusion. The uptake of DHEAS could be inhibited by antimycin A, carbonylcyanide-m-chlorophenylhydrazone, and dinitrophenol (inhibitors of the mitochondrial respiratory chain), by dinitrofluorobenzene and p-hydroxymercuribenzoate (NH2- and SH-blockers, respectively), and by monensin (Na+-specific ionophore). No inhibition was seen in the presence of ouabain (inhibitor of Na+-K+-ATPase) and phalloidin (inhibitor of cholate transport and actin-blocker). Interestingly, DHEAS uptake was inhibited by bile acids (cholate, taurocholate and glycocholate). Conversely, [3H]cholate uptake was strongly inhibited by DHEAS, which indicates a competition for the same carrier. Replacement of sodium ion with choline markedly decreased uptake velocity at pharmacological DHEAS concentrations. The results suggest that DHEAS uptake is a saturable, energy-dependent, carrier-mediated, partially Na+-dependent process, and that DHEAS may be taken up via the multispecific bile acid transport system.  相似文献   

13.
Efficient lipid-mediated transfection of DNA into primary rat hepatocytes   总被引:3,自引:0,他引:3  
Cationic lipids are an effective means for transfecting nucleic acids into a variety of cell types. Very few of these lipids, however, have been reported to be effective with primary cells. We report on the efficacy of several commercially available cationic lipid reagents to transfect plasmid DNA into primary rat hepatocytes in culture. The reagents tested in this study include TransfectAce, LipofectAmine, Lipofectin, N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammoniumchloride (DOTMA), (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl-ammonium methylsulfate (DOTAP), and cetyltrimethyl-ammonium bromide/dioleoylphosphatidylethanol-amine (CTAB/DOPE). Electron micrographic (EM) studies indicate that similar size Lipofectin and DOTAP vesicles contain DNA-like material internally and that these vesicles attach to the cell membrane. DOTAP vesicles are multilamellar, appear as clusters, and have a high DNA-to-lipid ratio. Lipofectin vesicles appear to attach to the cell surface as individual vesicles. The EM observations are consistent with current theories on the mechanism of transfection by cationic lipids. While Lipofectin has proven to be effective in transfection studies of primary cells in culture, we have found DOTAP to be a viable alternative. DOTAP yields transfection rates in hepatocytes comparable to DOTMA and Lipofectin, however, at lower concentrations of reagent and at considerably less cost. Optimal conditions for transfecting 5 μg of plasmid DNA with DOTAP were achieved by utilizing multilamellar (vortexed) vesicles at a concentration of 15 μg DOTAP per 2 ml media in 60-mm plates for 2 h transfection time. In this study, DOTAP has proven to be economical, easy to prepare, and very effective in transfecting DNA into primary rat hepatocytes.  相似文献   

14.
We have used biochemical and morphological techniques to demonstrate that hepatocytes in the perfused liver bind, internalize, and degrade substantial amounts of murine epidermal growth factor (EGF) via a receptor-mediated process. Before ligand exposure, about 300,000 high-affinity receptors were detectable per cell, displayed no latency, and co-distributed with conventional plasma membrane markers. Cytochemical localization using EGF coupled to horseradish peroxidase (EGF-HRP) revealed that the receptors were distributed along the entire sinusoidal and lateral surfaces of hepatocytes. When saturating concentrations of EGF were perfused through a liver at 35 degrees C, ligand clearance was biphasic with a rapid primary phase of 20,000 molecules/min per cell that dramatically changed at 15-20 min to a slower secondary phase of 2,500 molecules/min per cell. During the primary phase of uptake, approximately 250,000 molecules of EGF and 80% of the total functional receptors were internalized into endocytic vesicles which could be separated from enzyme markers for plasma membranes and lysosomes on sucrose gradients. The ligand pathway was visualized cytochemically 2-25 min after EGF-HRP internalization and a rapid transport from endosomes at the periphery to those in the Golgi apparatus-lysosome region was observed (t 1/2 approximately equal to 7 min). However, no 125I-EGF degradation was detected for at least 20 min. Within 30 min after EGF addition, a steady state was reached which lasted up to 4 h such that (a) the rate of EGF clearance equaled the rate of ligand degradation (2,500 molecules/min per cell); (b) a constant pool of undegraded ligand was maintained in endosomes; and (c) the number of accessible (i.e., cell surface) receptors remained constant at 20% of initial values. By 4 h hepatocytes had internalized and degraded 3 and 2.3 times more EGF, respectively, than the initial number of available receptors, even in the presence of cycloheximide and without substantial loss of receptors. All of these results suggest that EGF receptors are internalized and that their rate of recycling to the surface from intracellular sites is governed by the rate of entry of ligand and/or receptor into lysosomes.  相似文献   

15.
Incubation of isolated rat hepatocytes under conditions which support maximal autophagy (amino acid-free medium) caused a marked alteration in the density distribution of lysosomes in continuous metrizamide gradients (mean peak density reduced from 1.14 to 1.09 g/ml). The autophagic sequestration inhibitor 3-methyladenine (3MA) partially prevented the density shift, presumably by stopping the formation of light autophagosomes which otherwise fuse with dense lysosomes and thereby alter the lysosomal density.  相似文献   

16.
17.
18.
19.
The mitochondrial permeability transition (MPT) initiated by reactive oxygen species (ROS) plays an essential role in ischemia–reperfusion (IR) injury. Iron is a critical catalyst for ROS formation, and intracellular chelatable iron promotes oxidative injury-induced and MPT-dependent cell death in hepatocytes. Accordingly, our aim was to investigate the role of chelatable iron in IR-induced ROS generation, MPT formation, and cell death in primary rat hepatocytes. To simulate IR, overnight-cultured hepatocytes were incubated anoxically at pH 6.2 for 4 h and reoxygenated at pH 7.4. Chelatable Fe2+, ROS, and mitochondrial membrane potential were monitored by confocal fluorescence microscopy of calcein, chloromethyldichlorofluorescein, and tetramethylrhodamine methyl ester, respectively. Cell killing was assessed by propidium iodide fluorimetry. Ischemia caused progressive quenching of cytosolic calcein by more than 90%, signifying increased chelatable Fe2+. Desferal and starch–desferal 1 h before ischemia suppressed calcein quenching. Ischemia also induced quenching and dequenching of calcein loaded into mitochondria and lysosomes, respectively. Desferal, starch–desferal, and the inhibitor of the mitochondrial Ca2+ uniporter (MCU), Ru360, suppressed mitochondrial calcein quenching during ischemia. Desferal, starch–desferal, and Ru360 before ischemia also decreased mitochondrial ROS formation, MPT opening, and cell killing after reperfusion. These results indicate that lysosomes release chelatable Fe2+ during ischemia, which is taken up into mitochondria by MCU. Increased mitochondrial iron then predisposes to ROS-dependent MPT opening and cell killing after reperfusion.  相似文献   

20.
Preparation of rat liver lysosomes   总被引:10,自引:0,他引:10  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号