首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The SCF complex is a type of ubiquitin-protein ligase (E3) that consists of invariable components, including Skp1, Cdc53/Cul1, and Rbx1, as well as variable components known as F-box proteins. Using a yeast two-hybrid system, we isolated six proteins that interact with Schizosaccharomyces pombe Skp1. Among them, Pof10 is a novel F-box protein consisting of 662 amino acids, harboring the F-box domain required for the binding to Skp1 and followed by four WD40 repeats. Overexpression of Pof10 in fission yeast resulted in loss of viability with marked morphological changes that are similar to those in pop1 mutant yeast. Coexpression of Skp1 with Pof10 prevented the lethality, suggesting that the lethality from Pof10 overexpression results from the sequestration of Skp1 from other F-box proteins including Pop1. Whereas most F-box proteins show rapid turnover, Pof10 has a remarkably long half-life in vivo and has been shown to be localized predominantly in cytoplasm. These results suggest that the stable F-box protein Pof10 might target abundant cytoplasmic proteins for degradation in fission yeast.  相似文献   

2.
3.
T Toda  M Shimanuki    M Yanagida 《The EMBO journal》1993,12(5):1987-1995
Two novel protein kinase C (PKC)-like genes, pck1+ and pck2+ were isolated from fission yeast by PCR. Both contain common domains of PKC-related molecules, but lack a putative Ca(2+)-binding domain so that they may belong to the nPKC group. Gene disruption of pck1+ and pck2+ establishes that they share an overlapping essential function for cell viability. Cells of a single pck2 deletion display severe defects in cell shape; they are irregular and sometimes pear-like instead of cylindrical. In contrast, the induced overexpression of pck2+ is lethal, producing multiseptated and branched cells. These results suggest that fission yeast PKC-like genes are involved in the polarity of cell growth control. We show that pck2 is allelic to sts6, a locus we have previously identified by its supersensitivity to staurosporine, a potent protein kinase inhibitor [Toda et al. (1991) Genes Dev., 5, 60-73]. In addition, the lethal overexpression of pck2+ can be suppressed by staurosporine, indicating that fission yeast pck1 and pck2 are molecular targets of this inhibitor.  相似文献   

4.
Cell adhesion to the extracellular matrix (ECM) is a requirement for proliferation that is typically lost in malignant cells. In the absence of adhesion, nontransformed cells arrest in G1 with increased levels of the cyclin-dependent kinase inhibitor p27. We have reported previously that the degradation of p27 requires its phosphorylation on Thr-187 and is mediated by Skp2, an F-box protein that associates with Skp1, Cul1, and Roc1/Rbx1 to form the SCF(Skp2) ubiquitin ligase complex. Here, we show that the accumulation of Skp2 protein is dependent on both cell adhesion and growth factors but that the induction of Skp2 mRNA is exclusively dependent on cell adhesion to the ECM. Conversely, the expression of the other three subunits of the SCF(Skp2) complex is independent of cell anchorage. Phosphorylation of p27 on Thr-187 is also not affected significantly by the loss of cell adhesion, demonstrating that increased p27 stability is not dependent on p27 dephosphorylation. Significantly, ectopic expression of Skp2 in nonadherent G1 cells resulted in p27 downregulation, entry into S phase, and cell division. The ability to induce adhesion-independent cell cycle progression was potentiated by coexpressing Skp2 with cyclin D1 but not with cyclin E, indicating that Skp2 and cyclin D1 cooperate to rescue proliferation in suspension cells. Our study shows that Skp2 is a key target of ECM signaling that controls cell proliferation.  相似文献   

5.
Proteins of the MO25 family are widely conserved but their function has not been characterized in detail. Human MO25 is a cofactor of LKB1, a conserved protein kinase with roles in cell polarity in nematodes, flies and mammalian cells. Furthermore, the budding yeast MO25 homologue, Hym1, is important for cell separation and morphogenesis. We have characterized Pmo25p, the MO25 homologue in the fission yeast Schizosaccharomyces pombe. Pmo25p is an essential protein required for polar growth; in its absence the actin cytoskeleton becomes depolarized and cells adopt a round morphology. In addition, pmo25 mutants are defective in cell separation. Both functions of Pmo25p appear to be mediated by the Orb6p–Mob2p kinase complex. Pmo25p shows no distinct localization during interphase, but it is recruited to one of the two spindle pole bodies during anaphase and to the division site during cytokinesis. The septation initiation network (SIN) regulates the localization of Pmo25p, suggesting that it regulates Pmo25p function during cell division.  相似文献   

6.
Skp1p-cullin-F-box protein (SCF) complexes are ubiquitin-ligases composed of a core complex including Skp1p, Cdc53p, Hrt1p, the E2 enzyme Cdc34p, and one of multiple F-box proteins which are thought to provide substrate specificity to the complex. Here we show that the F-box protein Rcy1p is required for recycling of the v-SNARE Snc1p in Saccharomyces cerevisiae. Rcy1p localized to areas of polarized growth, and this polarized localization required its CAAX box and an intact actin cytoskeleton. Rcy1p interacted with Skp1p in vivo in an F-box-dependent manner, and both deletion of its F box and loss of Skp1p function impaired recycling. In contrast, cells deficient in Cdc53p, Hrt1p, or Cdc34p did not exhibit recycling defects. Unlike the case for F-box proteins that are known to participate in SCF complexes, degradation of Rcy1p required neither its F box nor functional 26S proteasomes or other SCF core subunits. Importantly, Skp1p was the only major partner that copurified with Rcy1p. Our results thus suggest that a complex composed of Rcy1p and Skp1p but not other SCF components may play a direct role in recycling of internalized proteins.  相似文献   

7.
The SCF ubiquitin ligase complex consists of four components, Skp1, Cul1, ROC1/Rbx1, and a variable subunit F-box protein, which serves as a receptor for target proteins. The F-box proteins consist of an N-terminal ∼40 amino acid F-box domain that binds to Skp1 and the C-terminal substrate-binding domain. We have reported previously that Fbs1 and Fbs2 are N-linked glycoprotein-specific F-box proteins. In addition, other three F-box proteins, Fbg3, Fbg4, and Fbg5, show high homology to Fbs1 and Fbs2, but their functions remain largely unknown. Here we report that Skp1 assists in correct folding of exogenously expressed F-box proteins. Fbs2 as well as Fbg3, Fbg4, and Fbg5 proteins formed SCF complexes but did not bind to N-glycoproteins when exogenously expressed alone. However, co-expression of Fbs2 and Fbg5 with Skp1 facilitated their binding to glycoproteins that reacted with ConA. Furthermore, Skp1 increased the cellular concentrations of F-box proteins by preventing aggregate formation. These observations suggest that Skp1 plays an important role in stabilizing the conformation of these F-box proteins, which increases their expression levels and substrate-binding.  相似文献   

8.
9.
The structural maintenance of chromosomes (SMC) family of proteins play essential roles in genomic stability. SMC heterodimers are required for sister-chromatid cohesion (Cohesin: Smc1 & Smc3), chromatin condensation (Condensin: Smc2 & Smc4), and DNA repair (Smc5 & Smc6). The SMC heterodimers do not function alone and must associate with essential non-SMC subunits. To gain further insight into the essential and DNA repair roles of the Smc5-6 complex, we have purified fission yeast Smc5 and identified by mass spectrometry the co-precipitating proteins, Nse1 and Nse2. We show that both Nse1 and Nse2 interact with Smc5 in vivo, as part of the Smc5-6 complex. Nse1 and Nse2 are essential proteins and conserved from yeast to man. Loss of Nse1 and Nse2 function leads to strikingly similar terminal phenotypes to those observed for Smc5-6 inactivation. In addition, cells expressing hypomorphic alleles of Nse1 and Nse2 are, like Smc5-6 mutants, hypersensitive to DNA damage. Epistasis analysis suggests that like Smc5-6, Nse1, and Nse2 function together with Rhp51 in the homologous recombination repair of DNA double strand breaks. The results of this study strongly suggest that Nse1 and Nse2 are novel non-SMC subunits of the fission yeast Smc5-6 DNA repair complex.  相似文献   

10.
The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.  相似文献   

11.
The Mcs6 CDK together with its cognate cyclin Mcs2 represents the CDK-activating kinase (CAK) of fission yeast Cdc2. We have attempted to determine complexes in which Mcs6 and Mcs2 mediate this and possible other functions. Here we characterize a novel interaction between Mcs2 and Skp1, a component of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase. Furthermore, we identify a novel protein termed Pmh1 through its association with Skp1. Pmh1 associates with the Mcs6-Mcs2 complex, enhancing its kinase activity, and represents the apparent homolog of metazoan Mat1. Association of Mcs2 or Pmh1 with Skp1 does not appear to be involved in proteolytic degradation, as these complexes do not contain Pcu1, and levels of Mcs2 or Pmh1 are not sensitive to inhibition of SCF and the 26S proteasome. The identified interactions between Skp1 and two regulatory CAK subunits may reflect a novel mechanism to modulate activity and specificity of the Mcs6 kinase.  相似文献   

12.
The Ku70-Ku80 heterodimer is a conserved protein complex essential for the non-homologous end-joining pathway. Ku proteins are also involved in telomere maintenance, although their precise roles remain to be elucidated. In fission yeast, pku70(+), the gene encoding the Ku70 homologue, has been reported. Here we report the identification and characterization of pku80(+), the gene encoding Ku80. Both pku70(+) and pku80(+) are essential for efficient non-homologous end-joining. We also found that the pku70 and pku80 mutants are sensitive to methyl methanesulfonate and hydroxyurea, suggesting their roles in the S phase. The pku80 mutant shows telomere shortening and tandem amplification of a subtelomeric sequence but no defects in the telomere position effect, as was previously reported for the pku70 mutant. By using the chromatin immunoprecipitation assay, we demonstrated that Pku70 and Pku80 physically interact with telomeric repeats and subtelomeric sequences. Interestingly, this telomere association of Pku proteins is independent of Taz1, a telomeric DNA-binding protein. We also showed that the Pku proteins do not associate with ectopically integrated telomeric repeats in the internal region of circular chromosomes. These results indicate that the physical end of DNA is necessary for the localization of Pku80 at telomeres.  相似文献   

13.
Hayles J  Aves S  Nurse P 《The EMBO journal》1986,5(12):3373-3379
The gene suc1 encodes a product which suppresses certain temperature sensitive mutants of the cell cycle control gene cdc2 of Schizosaccharomyces pombe. Mutants in the suc1 gene or over-expression of its product leads to delays in mitotic and meiotic nuclear division. Deletion of the suc1 gene is lethal and generates some cells blocked in the cell cycle and others impaired in cellular growth. It is likely that the suc1 gene product binds and forms unstable complexes with the cdc2 protein kinase and with other proteins necessary for the cell cycle and cellular growth. suc1 may have a regulatory role in these processes.  相似文献   

14.
N Kinoshita  H Ohkura  M Yanagida 《Cell》1990,63(2):405-415
The activities of type 1 protein phosphatase (PP1) and 2A (PP2A) have distinct, essential roles in cell cycle control. Two previously identified PP1 genes (dis2+ and sds21+) and two PP2A genes (ppa1+ and ppa2+), highly homologous to mammalian PP2A, have been isolated from fission yeast. Only double gene disruption of both PP2A genes results in lethality, as is the case for PP1 genes. By fractionating and assaying PPases in wild-type, various deletion, and point mutant strains, the decrease of PP1 or PP2A activity is shown to cause mitotic defects, exhibiting strikingly different cell cycle phenotypes: cold-sensitive mutations in the same amino acid lesion of PP1 and PP2A produce chromosome nondisjunction and premature mitosis, respectively. Consistently, PP1 and PP2A genes cannot be functionally substituted. Although the overall levels of PP1 and PP2A activities do not fluctuate during the cell cycle, subpopulations might be regulated.  相似文献   

15.
Telomeres are essential for genome integrity. scRap1 (S. cerevisiae Rap1) directly binds to telomeric DNA and regulates telomere length and telomere position effect (TPE) by recruiting two different groups of proteins to its RCT (Rap1 C-terminal) domain. The first group, Rif1 and Rif2, regulates telomere length. The second group, Sir3 and Sir4, is involved in heterochromatin formation. On the other hand, human TRF1 and TRF2, as well as their fission yeast homolog, Taz1, directly bind to telomeric DNA and negatively regulate telomere length. Taz1 also plays important roles in TPE and meiosis. Human Rap1, the ortholog of scRap1, negatively regulates telomere length and appears to be recruited to telomeres by interacting with TRF2. Here, we describe two novel fission yeast proteins, spRap1 (S. pombe Rap1) and spRif1 (S. pombe Rif1), which are orthologous to scRap1 and scRif1, respectively. spRap1 and spRif1 are independently recruited to telomeres by interacting with Taz1. The rap1 mutant is severely defective in telomere length control, TPE, and telomere clustering toward the spindle pole body (SPB) at the premeiotic horsetail stage, indicating that spRap1 has critical roles in these telomere functions. The rif1 mutant also shows some defects in telomere length control and meiosis. Our results indicate that Taz1 provides binding sites for telomere regulators, spRap1 and spRif1, which perform the essential telomere functions. This study establishes the similarity of telomere organization in fission yeast and humans.  相似文献   

16.
When yeast cells enter into quiescence in response to nutrient limitation, the adenine deaminase Aah1p is specifically degraded via a process requiring the F-box protein Saf1p and components of the Skp1-Cullin-F-box complex. In this paper, we show that Saf1p interacts with both Aah1p and Skp1p. Interaction with Skp1p, but not with Aah1p, requires the F-box domain of Saf1p. Based on deletion and point mutations, we further demonstrate that the F-box domain of Saf1p is critical for degradation of Aah1p. We also establish that overexpression of Saf1p in proliferating cells is sufficient to trigger the degradation of Aah1p. Using this property and a two-dimensional protein gel approach, we found that Saf1p has a small number of direct targets. Finally, we isolated and characterized several point mutations in Aah1p, which increase its stability during quiescence. The majority of the mutated residues are located in two distinct exposed regions in the Aah1p three-dimensional model structure. Two hybrid experiments strongly suggest that these domains are directly involved in interaction with Saf1p. Importantly, we obtained a mutation in Aah1p that does not affect the protein interaction with Saf1p but abolishes Aah1p degradation. Because this mutated residue is an exposed lysine in the Aah1p three-dimensional model, we propose that it is likely to be a major ubiquitylation site. All together, our data strongly argue for Saf1p being a bona fide Skp1-Cullin-F-box subunit.  相似文献   

17.
Cells sense their size and use this information to coordinate cell division with cell growth to maintain a constant cell size within a given population. A model has been proposed for cell size control in the rod-shaped cells of the fission yeast, Schizosaccharomyces pombe. This involves a protein localized to the cell ends, which inhibits mitotic activators in the middle of the cell in a cell size-dependent manner. This protein, Pom1, along with another tip-localized protein, Nif1, have been implicated as direct sensors of cell size controlling the onset of mitosis. Here we have investigated cell size variability and size homeostasis at the G2/M transition, focusing on the role of pom1 and nif1. Cells deleted for either of these 2 genes show wild-type size homeostasis both in size variability analyses and size homeostasis experiments. This indicates that these genes do not have a critical role as direct cell size sensors in the control mechanism. Cell size homeostasis also seems to be independent of Cdc2–Tyr15 phosphorylation, suggesting that the size sensing mechanism in fission yeast may act through an unidentified pathway regulating CDK activity by an unknown mechanism.  相似文献   

18.
Hub1/Ubl5 is a member of the family of ubiquitin-like proteins (UBLs). The tertiary structure of Hub1 is similar to that of ubiquitin; however, it differs from known modifiers in that there is no conserved glycine residue near the C terminus which, in ubiquitin and UBLs, is required for covalent modification of target proteins. Instead, there is a conserved dityrosine motif proximal to the terminal nonconserved amino acid. In S. cerevisiae, high molecular weight adducts can be formed in vivo from Hub1, but the structure of these adducts is not known, and they could be either covalent or noncovalent. The budding yeast HUB1 gene is not essential, but Delta hub1 mutants display defects in mating. Here, we report that fission yeast hub1 is an essential gene, whose loss results in cell cycle defects and inefficient pre-mRNA splicing. A screen for Hub1 interactors identified Snu66, a component of the U4/U6.U5 tri-snRNP splicing complex. Furthermore, overexpression of Snu66 suppresses the lethality of a hub1ts mutant. In cells lacking functional hub1, the nuclear localization of Snu66 is disrupted, suggesting that an important role for Hub1 is the correct subcellular targeting of Snu66, although our data suggest that Hub1 is likely to perform other roles in splicing as well.  相似文献   

19.
Schizosaccharomyces pombe represents a genetic model system for studying cell polarity and division in eukaryotes. We report here the identification of Mac1, a novel fission yeast protein that localized predominantly to the cell tips and septum. Sequences corresponding to roughly the first 180 amino acids of Mac1, which exhibited weak homology to the transmembrane domains of the Aspergillus Pall protein [Mol. Microbiol. 30 (1998) 259], were found to specify localization to the cell periphery. The other 574 amino acids of Mac1 localized to the cytoplasm when expressed alone, thus suggesting that the N-terminal part of Mac1 functions as a plasma membrane anchor for the rest of the protein. In pom1 null mutant cells, which never switch from unipolar to bipolar growth but, instead, grow exclusively at the randomly chosen end [Genes Dev. 12 (1998) 1356], Mac1 was, nevertheless, found at both poles, thus suggesting that Mac1 does not specifically localize to the sites of growth. mac1 null mutant cells had no overt phenotype at 22-32 degrees C, but, nevertheless, displayed a marked decrease in viability at 34-36 degrees C, accompanied by severe separation defects. Overexpression of mac1 resulted in similar defects. Our data suggest that a correct dosage of Mac1 is needed for correct cell separation at elevated temperatures of growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号