首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Transgenic potato ( Solanum tuberosum cv. Prairie) lines were produced over-expressing a sucrose non-fermenting-1-related protein kinase-1 gene ( SnRK1 ) under the control of a patatin (tuber-specific) promoter. SnRK1 activity in the tubers of three independent transgenic lines was increased by 55%−167% compared with that in the wild-type. Glucose levels were decreased, at 17%−56% of the levels of the wild-type, and the starch content showed an increase of 23%−30%. Sucrose and fructose levels in the tubers of the transgenic plants did not show a significant change. Northern analyses of genes encoding sucrose synthase and ADP-glucose pyrophosphorylase, two key enzymes involved in the biosynthetic pathway from sucrose to starch, showed that the expression of both was increased in tubers of the transgenic lines compared with the wild-type. In contrast, the expression of genes encoding two other enzymes of carbohydrate metabolism, α-amylase and sucrose phosphate synthase, showed no change. The activity of sucrose synthase and ADP-glucose pyrophosphorylase was also increased, by approximately 20%–60% and three- to five-fold, respectively, whereas the activity of hexokinase was unchanged. The results are consistent with a role for SnRK1 in regulating carbon flux through the storage pathway to starch biosynthesis. They emphasize the importance of SnRK1 in the regulation of carbohydrate metabolism and resource partitioning, and indicate a specific role for SnRK1 in the control of starch accumulation in potato tubers.  相似文献   

6.
Seed development passes through developmental phases such as cell division, differentiation and maturation: each have specific metabolic demands. The ubiquitous sucrose non‐fermenting‐like kinase (SnRK1) coordinates and adjusts physiological and metabolic demands with growth. In protoplast assays sucrose deprivation and hormone supplementation, such as with auxin and abscisic acid (ABA), stimulate SnRK1‐promoter activity. This indicates regulation by nutrients: hormonal crosstalk under conditions of nutrient demand and cell proliferation. SnRK1‐repressed pea (Pisum sativum) embryos show lower cytokinin levels and deregulation of cotyledonary establishment and growth, together with downregulated gene expression related to cell proliferation, meristem maintenance and differentiation, leaf formation, and polarity. This suggests that at early stages of seed development SnRK1 regulates coordinated cotyledon emergence and growth via cytokinin‐mediated auxin transport and/or distribution. Decreased ABA levels and reduced gene expression, involved in ABA‐mediated seed maturation and response to sugars, indicate that SnRK1 is required for ABA synthesis and/or signal transduction at an early stage. Metabolic profiling of SnRK1‐repressed embryos revealed lower levels of most organic and amino acids. In contrast, levels of sugars and glycolytic intermediates were higher or unchanged, indicating decreased carbon partitioning into subsequent pathways such as the tricarbonic acid cycle and amino acid biosynthesis. It is hypothesized that SnRK1 mediates the responses to sugar signals required for early cotyledon establishment and patterning. As a result, later maturation and storage activity are strongly impaired. Changes observed in SnRK1‐repressed pea seeds provide a framework for how SnRK1 communicates nutrient and hormonal signals from auxins, cytokinins and ABA to control metabolism and development.  相似文献   

7.
8.
Several calcium-independent protein kinases were activated by hyperosmotic and saline stresses in Arabidopsis cell suspension. Similar activation profiles were also observed in seedlings exposed to hyperosmotic stress. One of them was identified to AtMPK6 but the others remained to be identified. They were assumed to belong to the SNF1 (sucrose nonfermenting 1)-related protein kinase 2 (SnRK2) family, which constitutes a plant-specific kinase group. The 10 Arabidopsis SnRK2 were expressed both in cells and seedlings, making the whole SnRK2 family a suitable candidate. Using a family-specific antibody raised against the 10 SnRK2, we demonstrated that these non-MAPK protein kinases activated by hyperosmolarity in cell suspension were SnRK2 proteins. Then, the molecular identification of the involved SnRK2 was investigated by transient expression assays. Nine of the 10 SnRK2 were activated by hyperosmolarity induced by mannitol, as well as NaCl, indicating an important role of the SnRK2 family in osmotic signaling. In contrast, none of the SnRK2 were activated by cold treatment, whereas abscisic acid only activated five of the nine SnRK2. The probable involvement of the different Arabidopsis SnRK2 in several abiotic transduction pathways is discussed.  相似文献   

9.
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been located at the heart of the control of metabolism and development in plants. The active SnRK1 form is usually a heterotrimeric complex. Subcellular localization and specific target of the SnRK1 kinase are regulated by specific beta subunits. In Arabidopsis , there are at least seven genes encoding beta subunits, of which the regulatory functions are not yet clear. Here, we tried to study the function of one beta subunit, AKINβ1. It showed that AKINβ1 expression was dramatically induced by ammonia nitrate but not potassium nitrate, and the investigation of AKINβ1 transgenic Arabidopsis and T-DNA insertion lines showed that AKINβ1 negatively regulated the activity of nitrate ruductase and was positively involved in sugar repression in early seedling development. Meanwhile AKINβ1 expression was reduced upon sugar treatment (including mannitol) and did not affect the activity of sucrose phosphate synthase. The results indicate that AKINβ1 is involved in the regulation of nitrogen metabolism and sugar signaling.  相似文献   

10.
11.

SNF1-related protein kinase (SnRK) 1 is an important factor that helps plants to overcome starvation stress. It has been shown that SnRK1 can regulate the activities of some enzymes involved in sucrose and starch metabolism. To uncover whether SnRK1 also plays a role in raffinose family oligosaccharide (RFO) metabolism, the enzymes in RFO metabolism were assessed in cucumber (Cucumis sativus L.) in vitro. Under starvation stress, SnRK1 was activated, which could regulate the expression of three alkaline α-galactosidase genes: CsAGA1, CsAGA2, and CsAGA3. CsAGA1 was down-regulated, whereas CsAGA2 and CsAGA3 were up-regulated, which indicated that they have different physiological functions under starvation stress. In addition, the expression level of one galactinol synthase gene, CsGosl 4, decreased significantly; however, this change did not relate to SnRK1. When cucumber calli were re-supplied with sucrose, stachyose, or raffinose, the activities of SnRK1 and the expression level of CsKIN1 were suppressed. Simultaneously, the expression levels of three acid α-galactosidase genes: CsGAL1, CsGAL2, and CsGAL3, and three alkaline α-galactosidase genes: CsAGA1, CsAGA2, and CsAGA3, were up-regulated by stachyose or raffinose. These six up-regulated genes were involved in the catabolism of RFOs. The galactinol synthase genes, except for up-regulated CsGosl4, were not significantly affected.

  相似文献   

12.
We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.  相似文献   

13.
Wang X  Peng F  Li M  Yang L  Li G 《Journal of plant physiology》2012,169(12):1173-1182
SnRK1 (sucrose non-fermenting-1-related protein kinase 1) plays an important role in plant carbon metabolism and development. To understand the mechanism of carbon and nitrogen metabolism regulated by MhSnRK1 from pingyitiancha (Malus hupehensis Rehd. var. pinyiensis Jiang), two transgenic lines (T2-7 and T2-9) over expressing this gene in tomato were studied. SnRK1 activity in the leaves of 2 transgenic lines was increased by 15-16% compared with that in the wild-type. The leaf photosynthetic rate in transgenic tomatoes was higher than the wild-type. The activity of sucrose synthase breakdown and ADP-glucose pyrophosphorylase was also increased, by approximately 25-36% and 44-48%, respectively, whereas sucrose synthase synthesis and sucrose phosphate synthase activities were unchanged. The content of starch in the leaves and red-ripening fruits was higher than that of the wild-type. The transgenic fruit ripened ~10 days earlier than the wild-type. The nitrate reductase activity (mgplant?1 h?1) shows no significant difference between the transgenic plant and the wild-type, but the N-uptake efficiency and root/shoot ratio in the T2-9 line were 15% and 35% higher than that in the wild-type, respectively. These results suggest that over expressing MhSnRK1 can increase both the carbon and nitrogen assimilation rate of the plant as well as regulate the development of fruit.  相似文献   

14.
15.
In Arabidopsis cell suspension, hyperosmotic stresses (mannitol and NaCl) were previously shown to activate nine sucrose non-fermenting 1 related protein kinases 2 (SnRK2s) whereas only five of them were also activated by abscisic acid (ABA) treatment. Here, the possible activation by phosphorylation/dephosphorylation of each kinase was investigated by studying their phosphorylation state after osmotic stress, using the Pro-Q Diamond, a specific dye for phosphoproteins. All the activated kinases were phosphorylated after osmotic stress but the induced phosphorylation changes were clearly different depending on the kinase. In addition, the increase of the global phosphorylation level induced by ABA application was lower, suggesting that different mechanisms may be involved in SnRK2 activation by hyperosmolarity and ABA. On the other hand, SnRK2 kinases remain activated by hyperosmotic stress in ABA-deficient and ABA-insensitive mutants, indicating that SnRK2 osmotic activation is independent of ABA. Moreover, using a mutant form of SnRK2s, a specific serine in the activation loop was shown to be phosphorylated after stress treatments and essential for activity and/or activation. Finally, SnRK2 activity was sensitive to staurosporine, whereas SnRK2 activation by hyperosmolarity or ABA was not, indicating that SnRK2 activation by phosphorylation is mediated by an upstream staurosporine-insensitive kinase, in both signalling pathways. All together, these results indicate that different phosphorylation mechanisms and at least three signalling pathways are involved in the activation of SnRK2 proteins in response to osmotic stress and ABA.  相似文献   

16.
17.
We resolved from spinach (Spinacia oleracea) leaf extracts four Ca2+-independent protein kinase activities that phosphorylate the AMARAASAAALARRR (AMARA) and HMRSAMSGLHLVKRR (SAMS) peptides, originally designed as specific substrates for mammalian AMP-activated protein kinase and its yeast homolog, SNF1. The two major activities, HRK-A and HRK-C (3-hydroxy-3-methylglutaryl-coenzyme A reductase kinase A and C) were extensively purified and shown to be members of the plant SnRK1 (SNF1-related protein kinase 1) family using the following criteria: (a) They contain 58-kD polypeptides that cross-react with an antibody against a peptide sequence characteristic of the SnRK1 family; (b) they have similar native molecular masses and specificity for peptide substrates to mammalian AMP-activated protein kinase and the cauliflower homolog; (c) they are inactivated by homogeneous protein phosphatases and can be reactivated using the mammalian upstream kinase; and (d) they phosphorylate 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis at the inactivating site, serine (Ser)-577. We propose that HRK-A and HRK-C represent either distinct SnRK1 isoforms or the same catalytic subunit complexed with different regulatory subunits. Both kinases also rapidly phosphorylate nitrate reductase purified from spinach, which is associated with inactivation of the enzyme that is observed only in the presence of 14-3-3 protein, a characteristic of phosphorylation at Ser-543. Both kinases also inactivate spinach sucrose phosphate synthase via phosphorylation at Ser-158. The SNF1-related kinases therefore potentially regulate several major biosynthetic pathways in plants: isoprenoid synthesis, sucrose synthesis, and nitrogen assimilation for the synthesis of amino acids and nucleotides.  相似文献   

18.
19.
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.  相似文献   

20.
Raffinose Synthesis in Chlorella vulgaris Cultures after a Cold Shock   总被引:1,自引:1,他引:0  
Chlorella vulgaris cultures have been submitted to a chilling shock, bringing down the growing temperature from to 24°C to 4°C. Growth was stopped immediately, and concomitantly there was an accumulation of sucrose and a decrease in the starch content. The enzymes involved in sucrose metabolism were differentially affected by the chilling shock. Sucrose phosphate synthase activity increased while sucrose synthase was not affected. Simultaneously with the chilling shock, raffinose began to accumulate. When algal cultures were returned at 24°C, raffinose disappeared. The presence of raffinose in algal cells has not been reported before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号