首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are amphiphiles found ubiquitously in the environment, including wildlife and humans, and are known to have toxic effects on physiological functions of various tissues. We investigated the effects of PFOS and PFOA on action potentials and L-type Ca(2+) currents, I(CaL), in isolated guinea-pig ventricular myocytes using whole-cell patch-clamp recording. In current-clamp experiments, PFOS significantly decreased the rate of spike, action potential duration, and peak potential at doses over 10 microM. In voltage-clamp experiments, PFOS increased the voltage-activated peak amplitude of I(CaL), and shifted the half-activation and inactivation voltages of I(CaL) to hyperpolarization. PFOA had similar effects PFOS, but showed significantly lower potency. These findings are consistent with previous observations for anionic n-alkyl surfactants, suggesting that PFOS and PFOA may change membrane surface potential, thereby eliciting general effects on calcium channels. These findings provide further insights into the mechanisms of PFOA and PFOS toxicities.  相似文献   

2.
Perfluoroalkyl substances (PFASs) are man-made polyfluorinated compounds that are widely used and persistent in the environment. PFASs have potential effects on many biological systems including the development of lung. Glucocorticoids have been reported to promote fetal and neonatal lung development at the late stage, and 11β-hydroxysteroid dehydrogenase 1(11βHSD1) in the lung is critical for the generation of local active glucocorticoid cortisol (human) or corticosterone (rodents) from biologically inert 11keto-steroids. The purpose of the present study is to study the direct inhibitory effects of PFASs on 11βHSD1 activities and action modes. Microsomal 11βHSD1 was subjected to the exposure to various PFASs, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), potassium perfluorohexanesulfonate (PFHxS) and potassium perfluorobutane sulfonate (PFBS). PFOS and PFOA inhibited neonatal rat lung 11βHSD1 activity with IC(50)s of 3.45μM (95% Confidence Intervals, CI(95): 1.97-6.37μM) and 45.31μM (CI(95): 27.64-74.26μM), respectively, while PFHxS and PFBS did not inhibit the enzyme activity at 250μM. PFOS and PFOA inhibited human 11βHSD1 activity with IC(50)s of 7.56μM (CI(95): 2.86-19.97μM) and 37.61μM (CI(95): 24.49-57.75μM), respectively, while PFHxS and PFBS did not inhibit the enzyme activity at 250μM. PFASs showed competitive inhibition on both human and rat 11βHSD1. In conclusion, the present study shows that PFOS and PFOA are the inhibitors of 11βHSD1.  相似文献   

3.
4.
Numerous synthetic FP-class prostaglandin (PG) analogs stimulated the contraction of isolated non-pregnant female rat uterus in a concentration-dependent manner with the following agonist potencies: bimatoprost acid (17-phenyl-trinor PGF(2alpha); EC(50)=0.68+/-0.06 nM)=cloprostenol (EC(50)=0.73+/-0.01 nM)>travoprost acid (EC(50)=1.3+/-0.07 nM)>latanoprost acid (EC(50)=2.7+/-0.08 nM)>PGF(2alpha) (EC(50)=52+/-11 nM)>unoprostone (UF-021; EC(50)=310+/-101 nM)>S-1033 (EC(50)=610+/-4 nM)>bimatoprost (EC(50)=1130+/-173 nM). The FP-receptor antagonist, AL-8810, antagonized the contractile effects of PGF(2alpha) (K(i)=2.9+/-0.2 microM), travoprost acid (K(i)=0.6+/-0.1 microM) and bimatoprost (K(i)=0.2+/-0.02 microM). Agonist and antagonist potencies for rat uterus contraction by these PGs compared well with their potencies for inducing/blocking functional responses in other systems (r=0.83-0.94) except with bovine iris sphincter (r=0.2; p<0.7). In conclusion, the rat uterus contains functionally active FP-receptors whose activation by a variety of free acid and an amide forms of synthetic PGs leads to the contraction of this tissue and which can be pharmacologically blocked by an FP-receptor antagonist, AL-8810.  相似文献   

5.
Concentration-dependent effects of thymol on calcium handling were studied in canine and guinea pig cardiac preparations (Langendorff-perfused guinea pig hearts, canine ventricular trabeculae, canine sarcoplasmic reticular vesicles and single ryanodine receptors). Thymol induced a concentration-dependent negative inotropic action in both canine and guinea pig preparations (EC(50) = 297 +/- 12 microM in dog). However, low concentrations of thymol reduced intracellular calcium transients in guinea pig hearts without decreasing contractility. At higher concentrations both calcium transients and contractions were suppressed. In canine sarcoplasmic reticular vesicles thymol induced rapid release of calcium (V(max) = 0.47 +/- 0.04 nmol s(-1), EC(50) = 258 +/- 21 microM, Hill coefficient = 3.0 +/- 0.54), and decreased the activity of the calcium pump (EC(50) = 253 +/- 4.7 microM, Hill coefficient = 1.62 +/- 0.05). Due to the less sharp concentration-dependence of the ATPase inhibition, this effect was significant from 50 microM, whereas the thymol-induced calcium release only from 100 microM. In single ryanodine receptors incorporated into artificial lipid bilayer thymol induced long lasting openings, having mean open times increased with 3 orders of magnitude, however, the specific conductance of the channel remained unaltered. This effect of thymol was not voltage-dependent and failed to prevent the binding of ryanodine. In conclusion, the negative inotropic action of thymol can be explained by reduction in calcium content of the sarcoplasmic reticulum due to the combination of the thymol-induced calcium release and inhibition of the calcium pump. The calcium-sensitizer effect, observed at lower thymol concentrations, indicates that thymol is likely to interact with the contractile machinery also.  相似文献   

6.
Isolated rat ventricular cardiac myocytes loaded with the fluorescent calcium indicator fura2 showed significant changes in intracellular calcium concentrations upon exposure to greater than 1 microM ATP (EC50 = 7.4 +/- 1.3 microM, n = 4, SE), suggesting that extracellular ATP may have an important influence on myocardial contractility. The response was found to be highly ATP specific and required extracellular calcium. Furthermore, 30 s pretreatment of the cells with 0.2-1 microM norepinephrine decreased the concentration of ATP required for the Ca2+ transient, shifting the EC50 for ATP to 1.7 +/- 0.1 microM (n = 3, SE). beta-Propranolol (a beta 1-receptor antagonist) prevented potentiation, whereas phentolamine (an alpha 1-receptor antagonist) did not, indicating that regulation is through the beta 1-adrenergic receptor. ATP and norepinephrine released locally from sympathetic neurons may act in concert through the ATP and beta 1-adrenergic receptors to regulate myocardial calcium homeostasis.  相似文献   

7.
We employed single myofibril techniques to test whether the presence of slow skeletal troponin-I (ssTnI) is sufficient to induce increased myofilament calcium sensitivity (EC(50)) and whether modulation of EC(50) affects the dynamics of force development. Studies were performed using rabbit psoas myofibrils activated by rapid solution switch and in which Tn was partially replaced for either recombinant cardiac Tn(cTn) or Tn composed of recombinant cTn-T (cTnT) and cTn-C (cTnC), and recombinant ssTnI (ssTnI-chimera Tn). Tn exchange was performed in rigor solution (0.5 mg/ml Tn; 20 degrees C; 2 h) and confirmed by SDS-PAGE. cTnI exchange induced a decrease in EC(50); ssTnI-chimera Tn exchange induced a further decrease in EC(50) (in microM: endogenous Tn, 1.35 +/- 0.08; cTnI, 1.04 +/- 0.13; ssTnI-chimera Tn, 0.47 +/- 0.03). EC(50) was also decreased by application of 100 microM bepridil (control: 2.04 +/- 0.03 microM; bepridil 1.35 +/- 0.03 microM). Maximum tension was not different between any groups. Despite marked alterations in EC(50), none of the dynamic activation-relaxation parameters were affected under any condition. Our results show that 1) incorporation of ssTnI into the fast skeletal sarcomere is sufficient to induce increased myofilament Ca(2+) sensitivity, and 2) the dynamics of actin-myosin interaction do not correlate with EC(50). This result suggests that intrinsic cross-bridge cycling rate is not altered by the dynamics of thin-filament activation.  相似文献   

8.
The effects of the enantiomers of a number of flexible and cis-constrained GABA analogues were tested on GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. (1S,2R)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((+)-CAMP), a potent and full agonist at the rho1 (EC(50) approximately 40 microM, I(max) approximately 100%) and rho 2 (EC(50) approximately 17 microM, I(max) approximately 100%) receptor subtypes, was found to be a potent partial agonist at rho3 (EC(50) approximately 28 microM, I(max) approximately 70%). (1R,2S)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((-)-CAMP), a weak antagonist at human rho1 (IC(50) approximately 890 microM) and rho2 (IC(50) approximately 400 microM) receptor subtypes, was also found to be a moderately potent antagonist at rat rho3 (IC(50) approximately 180 microM). Similarly, (1R,4S)-4-aminocyclopent-2-ene-1-carboxylic acid ((+)-ACPECA) was a full agonist at rho1 (EC(50) approximately 135 microM, I(max) approximately 100%) and rho2 (EC(50) approximately 60 microM, I(max) approximately 100%), but only a partial agonist at rho3 (EC(50) approximately 112 microM, I(max) approximately 37%), while (1S,4R)-4-aminocyclopent-2-ene-1-carboxylic acid ((-)-ACPECA) was a weak antagonist at all three receptor subtypes (IC(50)>300 microM). 4-Amino-(S)-2-methylbutanoic acid ((S)-2MeGABA) and 4-amino-(R)-2-methylbutanoic acid ((R)-2MeGABA) followed the same trend, with (S)-2MeGABA acting as a full agonist at the rho1 (EC(50) approximately 65 microM, I(max) approximately 100%), and rho2 (EC(50) approximately 20 microM, I(max) approximately 100%) receptor subtypes, and a partial agonist at rho3 (EC(50) approximately 25 microM, I(max) approximately 90%). (R)-2MeGABA, however, was a moderately potent antagonist at all three receptor subtypes (IC(50) approximately 16 microM at rho1, 125 microM at rho2 and 35 microM at rho3). On the basis of these expanded biological activity data and the solution-phase molecular structures obtained at the MP2/6-31+G* level of ab initio theory, a rationale is proposed for the genesis of this stereoselectivity effect.  相似文献   

9.
We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric compound 1-Me-Tet-AMPA is essentially inactive. We here report the enantiopharmacology of 2-Me-Tet-AMPA in radioligand binding and cortical wedge electrophysiological assay systems, and using cloned AMPA (GluR1-4) and kainic acid (KA) (GluR5, 6, and KA2) receptor subtypes expressed in Xenopus oocytes. 2-Me-Tet-AMPA was resolved using preparative chiral HPLC. Zwitterion (-)-2-Me-Tet-AMPA was assigned the (R)-configuration based on an X-ray crystallographic analysis supported by the elution order of (-)- and (+)-2-Me-Tet-AMPA using four different chiral HPLC columns and by circular dichroism spectra. None of the compounds tested showed detectable affinity for N-methyl-D-aspartic acid (NMDA) receptor sites, and (R)-2-Me-Tet-AMPA was essentially inactive in all of the test systems used. Whereas (S)-2-Me-Tet-AMPA showed low affinity (IC(50) = 11 microM) in the [(3)H]KA binding assay, it was significantly more potent (IC(50) = 0.009 microM) than AMPA (IC(50) = 0.039 microM) in the [(3)H]AMPA binding assay, and in agreement with these findings, (S)-2-Me-Tet-AMPA (EC(50) = 0.11 microM) was markedly more potent than AMPA (EC(50) = 3.5 microM) in the electrophysiological cortical wedge model. In contrast to AMPA, which showed comparable potencies (EC(50) = 1.3-3.5 microM) at receptors formed by the AMPA receptor subunits (GluR1-4) in Xenopus oocytes, more potent effects and a substantially higher degree of subunit selectivity were observed for (S)-2-Me-Tet-AMPA: GluR1o (EC(50) = 0.16 microM), GluR1o/GluR2i (EC(50) = 0.12 microM), GluR3o (EC(50) = 0.014 microM) and GluR4o (EC(50) = 0.009 microM). At the KA-preferring receptors GluR5 and GluR6/KA2, (S)-2-Me-Tet-AMPA showed much weaker agonist effects (EC(50) = 8.7 and 15.3 microM, respectively). It is concluded that (S)-2-Me-Tet-AMPA is a subunit-selective and highly potent AMPA receptor agonist and a potentially useful tool for studies of physiological AMPA receptor subtypes.  相似文献   

10.
The cloning and characterization of a P2X receptor (schP2X) from the parasitic blood fluke Schistosoma mansoni provides the first example of a non-vertebrate ATP-gated ion channel. A number of functionally important amino acid residues conserved throughout vertebrate P2X receptors, including 10 extracellular cysteines, aromatic and positively charged residues involved in ATP recognition, and a consensus protein kinase C site in the amino-terminal tail, are also present in schP2X. Overall, the amino acid sequence identity of schP2X with human P2X(1-7) receptors ranges from 25.8 to 36.6%. ATP evoked concentration-dependent currents at schP2X channels expressed in Xenopus oocytes with an EC(50) of 22.1 microM. 2',3'-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate (Bz-ATP) was a partial agonist (maximum response 75.4 +/- 4.4% that of ATP) with a higher potency (EC(50) of 3.6 microM) than ATP. Suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid blocked schP2X responses to 100 microm ATP with IC(50) values of 9.6 and 0.5 microM, respectively. Ivermectin (10 microM) potentiated currents to both ATP and Bz-ATP by approximately 60% with a minimal effect on potency (EC(50) of 18.2 and 1.6 microM, respectively). The relative permeability of schP2X expressed in HEK293 cells to various cations was determined under bi-ionic conditions. schP2X has a relatively high calcium permeability (P(Ca)/P(Na) = 3.80 +/- 0.29) and an estimated minimum pore diameter similar to that of vertebrate P2X receptors. SchP2X provides a useful comparative model for the better understanding of human P2X receptor function and may also provide an alternative drug target for treatment of schistosomiasis.  相似文献   

11.
The release of preaccumulated gamma-amino[3H]butyric acid ([3H]GABA) from putative GABAergic amacrine cells was studied in neuronal monolayer cultures made from embryonic chick retina. Release was specifically stimulated by excitatory amino acid agonists. N-Methyl-D-aspartate (NMDA; EC50, 19.1 +/- 5.0 microM), kainic acid (EC50, 15.6 +/- 2.3 microM), and the presumptive endogenous ligand glutamate (EC50, 3.6 +/- 0.5 microM) showed the same efficacy. Quisqualic acid, although the most potent agonist (EC50, 0.56 +/- 0.12 microM), was only half as efficacious. The time course of [3H]GABA release and autoradiographic visualization of responsive GABA-accumulating cells suggest that approximately 50% of the [3H]GABA-accumulating cells possess no or very low responsiveness to quisqualic acid. Depolarization (56 mM KCl)-induced release was fivefold lower than the maximal effect elicited by excitatory amino acids. Release of [3H]GABA and of endogenous GABA was entirely independent of extracellular Ca2+ but was completely abolished after replacement of Na+ by choline or Li+. The effects of NMDA and low concentrations of glutamate (up to 10 microM) were blocked by 2-amino-5-phosphonovaleric acid, by MK 801, and (in a voltage-dependent manner) by Mg2+. The reduction of NMDA responses by kynurenic acid was reversed by D-serine, and quisqualic acid competitively inhibited kainic acid-evoked release. Our results show that the cultured [3H]GABA-accumulating neurons, which probably represent the in vitro counterparts of GABAergic amacrine cells, express at least two types of excitatory amino acid receptors (of the NMDA and non-NMDA type), both of which can mediate a Ca2(+)-independent but Na2(+)-dependent release of GABA.  相似文献   

12.
In this study we investigated the effect of a single-compound exposure or two compound co-exposure to tetrachlorodibenzo-p-dioxin (TCDD) plus perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) on the mRNA expression of cytochromes P450 (CYP) 1A4, 4V2 and 3A37, ethoxyresorufin-O-deethylase (EROD) activity and cell viability in chicken (Gallus gallus domesticus) embryo primary hepatocyte cultures. Cell viability after 24 h of incubation was significantly decreased in cells exposed to PFOS at concentrations between 30 µM and 60 µM with or without co-exposure to TCDD (0.3 nM at maximum). PFOA did not decrease cell viability even at maximum concentrations of 60 µM. TCDD induced CYP1A4 mRNA and EROD activity substantially as reported previously. PFOS also increased CYP1A4 mRNA in a concentration-dependent manner. Co-exposure of cells to PFOS plus TCDD did not change CYP1A4 mRNA levels compared to cells treated with TCDD alone. PFOS alone did not induce CYP4V2 mRNA, however 40–50 µM PFOS plus TCDD (0.3 nM) induced CYP4V2 mRNA compared to TCDD alone (P < 0.05). This trend was similar to that observed with co-exposure to TCDD plus PFOA, suggesting that PFOA alone did not induce CYP4V2 mRNA, whereas co-exposure to TCDD plus PFOA induced the expression levels. PFOS alone decreased CYP3A37 mRNA by a maximum of 45%, however after co-exposure to TCDD, recovery of mRNA expression to levels measured in DMSO-treated cells was observed. Our data suggest a complex gene response to mixtures of dioxin-like and perfluorinated compounds.  相似文献   

13.
Because cerebrovascular cGMP levels vary significantly during maturation, we examined the hypothesis that the ability of cGMP to relax cerebral arteries also changes during maturation. In concentration-response experiments, potassium-induced tone in basilar arteries was significantly more sensitive to a nonmetabolizable cell-permeant cGMP analogue 8-(p-chlorophenylthio)-cGMP (8-pCPT-cGMP) in term fetal [-log one-half maximal concentration (EC(50)) = 4.4 +/- 0.1 M] than in adult (-log EC(50) = 4.0 +/- 0.1 M) ovine basilar arteries. Serotonin-induced tone also revealed significantly greater sensitivity to the cGMP analogue in fetal (-log EC(50) = 4.9 +/- 0.1 M) than in adult (-log EC(50) = 4.7 +/- 0.1 M) basilars. In fura 2-loaded preparations, 8-pCPT-cGMP had no significant effect on cytosolic calcium concentrations in potassium-contracted arteries but at 6 microM significantly reduced calcium only in fetal basilars (Delta = 33 +/- 8%). Higher 8-pCPT-cGMP concentrations reduced cytosolic calcium in both fetal and adult basilars. Similarly, in both potassium- and 5-hydroxytryptamine (5-HT)-contracted preparations, low concentrations of 8-pCPT-cGMP reduced myofilament calcium sensitivity only in fetal basilars (Delta = 29 +/- 6 and Delta = 42 +/- 10%, respectively), whereas higher concentrations reduced calcium sensitivity in both fetal and adult arteries. In beta-escin-permeabilized arteries, equivalent reductions in basal and agonist-enhanced myofilament calcium sensitivity were produced by much lower 8-pCPT-cGMP concentrations in fetal (172 and 61 microM, respectively) than in adult (410 and 231 microM, respectively) basilars. The mechanisms mediating cGMP-induced vasorelaxation appear similar in fetal and adult arteries, with the exception that they are much more sensitive to cGMP in fetal than adult arteries. These age-related differences in the sensitivity of cytosolic calcium concentration, basal, and agonist-enhanced myofilament calcium sensitivity to cGMP can easily explain why both potassium- and 5-HT-induced tone are more sensitive to cGMP in fetal than adult cerebral arteries.  相似文献   

14.
11β-Hydroxysteroid dehydrogenase 2 (11β-HSD2) regulates active glucocorticoid access to glucocorticoid and mineralocorticoid receptors by metabolizing it to an inactive form. Perfluoroalkylated substances (PFASs) are man-made polyfluorinated compounds that are widely used and persistent in the environment. We tested the inhibitory potencies of four PFASs including perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) on human and rat 11β-HSD2. PFOS was a potent inhibitor of both human (IC(50)=48 nM) and rat (IC(50)=293 nM) 11β-HSD2 activities. The potencies for the inhibition of human and rat 11β-HSD2 activities were PFOS>PFOA>PFHxS>PFBS. PFASs showed competitive inhibition of both human and rat 11β-HSD2 activities. This observation indicates that PFOS is a potent endocrine disruptor for glucocorticoid metabolism. Article from the Special issue on Targeted Inhibitors.  相似文献   

15.
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.  相似文献   

16.
The aim of this work is to evaluate the anti-thromboxane activity of two pure enantiomers of (R,S)-BM-591, a nitrobenzene sulfonylurea chemically related to torasemide, a loop diuretic. The drug affinity for thromboxane A2 receptor (TP) of human washed platelets has been determined. In these experiments, (R)-BM-591 (IC50 = 2.4+/-0.1 nM) exhibited a significant higher affinity than (S)-BM-591 (IC50 = 4.2+/-0.15 nM) for human washed platelets TP receptors. Both enantiomers were stronger ligands than SQ-29548 (IC50 = 21.0+/-1.0 nM) and sulotroban (IC50 = 930+/-42 nM), two reference TXA2 receptor antagonists. Pharmacological characterisations of (S)-BM-591 and (R)-BM-591 were compared in several models. Thus, (R)-BM-591 strongly prevented platelet aggregation induced by arachidonic acid (AA) (600 microM) and U-46619 (1 microM) while (S)-BM-591 showed a lower activity. On isolated tissues pre-contracted by U-46619, a stable TXA2 agonist, (S)-BM-591 was more potent in relaxing guinea-pig trachea (EC50 = 0.272+/-0.054 microM) and rat aorta (EC50 = 0.190+/-0.002 microM) than (R)-BM-591 (EC50 of 9.60+/-0.63 microM and 0.390+/-0.052 microM, respectively). Moreover, at 1 microM, (R)-BM-591 totally inhibited TXA2 synthase activity, expressed as TXB2 production from human platelets, while at the same concentration, (S)-BM-591 poorly reduced the TXB2 synthesis (22%). Finally, in rats, both enantiomers lost the diuretic activity of torasemide. In conclusion, (R)-BM-591 exhibits a higher affinity and antagonism on human platelet TP receptors than (S)-BM-591 as well as a better thromboxane synthase inhibitory potency. In contrast, (S)-BM-591 is more active than the (R)-enantiomer in relaxing smooth muscle contraction of rat aorta and trachea guinea pig. Consequently, (R)-BM-591 represents the best candidate for further development in the field of thrombosis disorders.  相似文献   

17.
Glutathione (GSH) is the major low-molecular weight antioxidant in mammalian cells. Thus, its analogues carrying similar and/or additional positive properties might have clinical perspectives. Here, we report the design and synthesis of a library of tetrapeptidic GSH analogues called UPF peptides. Compared to cellular GSH our designed peptidic analogues showed remarkably higher hydroxyl radical scavenging ability (EC(50) of GSH: 1,231.0 +/- 311.8 microM; EC(50) of UPF peptides: from 0.03 to 35 microM) and improved antiradical efficiency towards a stable alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radical. The best of UPF peptides was 370-fold effective hydroxyl radical scavengers than melatonin (EC(50): 11.4 +/- 1.0 microM). We also found that UPF peptides do not influence the viability and membrane integrity of K562 human erythroleukemia cells even at 200 microM concentration. Dimerization of GSH and UPF peptides was compared in water and in 0.9% saline solutions. The results, together with an earlier finding that UPF1 showed protective effects in global cerebral ischemia model in rats, suggest that UPF peptides might serve both as potent antioxidants as well as leads for design of powerful non-peptidic antioxidants that correct oxidative stress-driven events.  相似文献   

18.
Cardiac sarcoplasmic reticulum contains an endogenous calcium-calmodulin-dependent protein kinase and a 22,000-Da substrate, phospholamban. This kinase is half-maximally activated (EC50) by 3.8 +/- 0.3 microM calcium and is absolutely dependent on exogenous calmodulin (EC50 = 49 nM). To determine the effect of this phosphorylation on calcium transport, sarcoplasmic reticulum vesicles (0.5 mg/ml) were preincubated under conditions for optimal phosphorylation (50 mM potassium phosphate, pH 7.0, 10 mM MgCl2, 0.5 mM EGTA, 0.478 mM CACl2, 0.1 microM calmodulin, 0.5 mM ATP). Control sarcoplasmic reticulum was preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both control and phosphorylated vesicles were centrifuged and resuspended in 0.3 M sucrose, 20 mM Tris-HCl, 100 mM KCl, pH 7.0, to remove calmodulin and subsequently assayed for calcium (45Ca) transport in the presence of 2.5 mM Tris-oxalate. Phosphorylation of sarcoplasmic reticulum vesicles by calcium-calmodulin-dependent protein kinase resulted in a significant increase (2- to 4-fold) in the rate of calcium transport at low calcium concentrations (less than 3 microM), while calcium transport was minimally affected at higher calcium. Hill coefficients (n) derived from Hill plots of transport data showed no difference between control and phosphorylated sarcoplasmic reticulum (n = 2.0), indicating that phosphorylation does not alter the cooperativity between calcium sites on the calcium pump. The EC50 for calcium activation of calcium transport by control vesicles was 0.86 +/- 0.1 microM calcium, and phosphorylation of phospholamban decreased this value to 0.61 +/- 0.07 microM calcium (n = 7, p less than 0.028), indicating an increase in the apparent affinity for calcium upon phosphorylation. These results were found to be specific for calcium-calmodulin-dependent phosphorylation of phospholamban. Control experiments on the effects of the reactants used in the phosphorylation assay and subsequent centrifugation of sarcoplasmic reticulum showed no alteration of the rate of calcium transport. Therefore, the calcium pump in cardiac sarcoplasmic reticulum appears to be regulated by an endogenous calcium-calmodulin-dependent protein kinase, and this may provide an important regulatory mechanism for the myocardium.  相似文献   

19.
3,4-Dihydroquinazoline analogues substituted by N-methyl-N-(5-pyrrolidinopentyl)amine at the 2-position were synthesized and their blocking effects were evaluated for T- and N-type calcium channels. Compound 11b (KYS05080), compared to mibefradil (IC50=1.34+/-0.49 microM), was about 5-fold potent (IC50=0.26+/-0.01 microM) for T-type calcium channel (alpha1G) blocking and its selectivity of T/N-type was also improved (7.5 versus 1.4 of mibefradil).  相似文献   

20.
The 5-lipoxygenase (5-LO) inhibitors BI-L-239 and A-64077 were compared with the 5-LO translocation inhibitor MK-886 for the ability to inhibit leukotriene B4 (LTB4) biosynthesis by chopped (1 mm3) guinea pig lung. LTB4 synthesis by ovalbumin-sensitized chopped lung tissue was determined after stimulation with either calcium ionophore (A23187) or antigen. With A23187 stimulation, MK-886 was more potent (IC50 = 0.39 +/- 0.23 microM, mean +/- SEM, p < 0.01) than BI-L-239 (IC50 = 2.48 +/- 0.46 microM) or A-64077 (IC50 = 4.68 +/- 0.70 microM) and BI-L-239 was more potent than A64077 (p < 0.02). Thus, the order of potency was MK-886 > BI-L-239 > A-64077 for inhibition of calcium ionophore-induced LTB4 generation. There was no significant differences in potency of the compounds in chopped lung stimulated with antigen: IC50 for LTB4 synthesis by A-64077 = 3.31 +/- 1.70 microM, for BI-L-239 = 9.06 +/- 4.94 microM, and for MK-886 = 13.33 +/- 7.91 microM. The ability of these compounds to inhibit contraction of tracheal tissue from actively sensitized guinea pigs in response to antigen was also determined in the presence of indomethacin (15 micrograms/ml), mepyramine, and atropine (5 micrograms each/ml). Both 5-LO inhibitors inhibited antigen-induced contraction, with IC50 values for BI-L-239 and A-64077 of 1.58 and 4.35 microM respectively. MK-886 was ineffective at inhibiting antigen-induced tracheal contraction in vitro at concentrations up to 30 microM. In summary, these compounds inhibit antigen-induced and A23187-induced leukotriene biosynthesis in guinea pig tissue. These 5-LO inhibitors were similarly effective at inhibiting antigen-induced tracheal contraction where MK-886 was ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号