首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

2.
IFN-gamma is an essential component of the early Listeria monocytogenes-specific immune response, and is also an important regulator of Ag processing and presentation. Ag presentation is required for the induction and also the effector function of antimicrobial T cells. To evaluate the effect of IFN-gamma on bacterial Ag presentation in vivo, macrophages and dendritic cells were separated from L. monocytogenes-infected tissues and analyzed with peptide-specific CD4 and CD8 T cell lines in a sensitive ELISPOT-based ex vivo Ag presentation assay. The comparison of professional APCs isolated from infected IFN-gamma-deficient and wild-type mice revealed different peptide presentation patterns of L. monocytogenes-derived CD8 T cell epitopes, while the presentation pattern of CD4 T cell epitopes remained unchanged. The further in vitro analysis of the generation of CD8 T cell epitopes revealed a peptide-specific effect of IFN-gamma on MHC class I-restricted Ag presentation. These results show that despite this modulation of the Ag presentation pattern of CD8 T cell epitopes, IFN-gamma is not generally required for the MHC class I- and MHC class II-restricted presentation of L. monocytogenes-derived antigenic peptides by professional APCs in vivo.  相似文献   

3.
Both exogenously derived and endogenously derived Ag generally require processing for their optimal binding and presentation by class I and class II major histocompatibility proteins. It is not known whether steps involved in Ag processing also affect the recognition of alloreactive T cells. We have recently described B cell mutants which have general defects in the processing and presentation of a variety of exogenous Ag to class II restricted T cells. In this report we have studied the ability of these processing mutants to stimulate a set of anti-DR3-specific alloreactive T cells clones. These processing/presentation mutants express normal MHC class II molecules, both in terms of primary sequence and cell surface abundance, but they appear unable to generate effective peptide-MHC complexes. When tested for their ability to stimulate MHC class II alloreactive T cell clones, only one of four T cell clones was stimulated by these mutants; the other three alloreactive T cell clones were not stimulated by either of two different mutants. Both of these mutants express normal levels of the accessory molecules, LFA-3 and ICAM-1. The inability of these mutants to stimulate three of four alloreactive clones indicates that the capacity to be recognized by many alloreactive T cells is linked to the Ag processing capacity of a stimulator cell.  相似文献   

4.
CTL recognize peptides that derive from viral protein Ags by proteolytic processing and are presented by MHC class I molecules. In this study we tested whether coexpression of viral Ags in the same cell leads to competition between them. To this end, two L(d)-restricted epitopes derived from HIV-1 envelope gp160 (ENV) and from CMV pp89 phosphoprotein were coexpressed. HIV ENV strain IIIB, but not MN variant, impaired recognition by specific CTL of CMV pp89 epitope 9pp89. Susceptibility to inhibition after ENV coexpression was inversely related to the amount of antigenic 9pp89 peptide processed from different antigenic constructs. In line with it, competition decreased the yield of naturally processed antigenic 9pp89 peptide bound to MHC class I molecules in coinfected cells. Also, point mutants of the presenting MHC class I molecule differed in their competition pattern. Collectively, the data imply that competition operates at the step of MHC-peptide complex assembly or stabilization. We conclude that, although not the rule, in certain combinations there is interference between different Ags expressed in the same cell and presented by the same MHC class I allele. These studies have implications for vaccine development and for understanding immunodominance.  相似文献   

5.
The enzymes that degrade proteins to peptides for presentation on MHC class II molecules are poorly understood. The cysteinal lysosomal proteases, cathepsin L (CL) and cathepsin S (CS), have been shown to process invariant chain, thereby facilitating MHC class II maturation. However, their role in Ag processing is not established. To examine this issue, we generated embryonic fibroblast lines that express CL, CS, or neither. Expression of CL or CS mediates efficient degradation of invariant chain as expected. Ag presentation was evaluated using T cell hybridoma assays as well as mass spectroscopic analysis of peptides eluted from MHC class II molecules. Interestingly, we found that the majority of peptides are presented regardless of CL or CS expression, although these proteases often alter the relative levels of the peptides. However, for a subset of Ags, epitope generation is critically regulated by CL or CS. This result suggests that these cysteinal proteases participate in Ag processing and generate qualitative and quantitative differences in the peptide repertoires displayed by MHC class II molecules.  相似文献   

6.
MHC class I molecules present peptides derived primarily from endogenously synthesized proteins on the cell surface as ligands for CD8+ T cells. However, CD8+ T cell responses to extracellular bacteria, virus-infected, or tumor cells can also be elicited because certain professional APC can generate peptide/MHC class I (MHC-I) complexes from exogenous sources. Whether the peptide/MHC-I complexes are generated because the exogenous proteins enter the classical cytosolic, TAP-dependent MHC-I processing pathway or an alternate pathway is controversial. Here we analyze the generation of peptide/MHC-I complexes from recombinant Escherichia coli as an exogenous Ag source that could be delivered to the phagosomes or directly into the cytosol. We show that peritoneal and bone marrow macrophages generate peptide/MHC-I complexes by the classical as well as an alternate, but relatively less efficient, TAP-independent pathway. Using a novel method to detect proteolytic intermediates we show that the generation of the optimal MHC-I binding peptide in the alternate pathway requires cysteine as well as other protease(s). This alternate TAP-independent pathway also operates in vivo and provides a potential mechanism for eliciting CD8+ T cell responses to exogenous Ags.  相似文献   

7.
Class II MHC molecules survey the endocytic compartments of APCs and present antigenic peptides to CD4 T cells. In this context, lysosomal proteases are essential not only for the generation of antigenic peptides but also for proteolysis of the invariant chain to allow the maturation of class II MHC molecules. Recent studies with protease inhibitors have implicated the asparagine endopeptidase (AEP) in class II MHC-restricted Ag presentation. We now report that AEP-deficient mice show no differences in processing of the invariant chain or maturation of class II MHC products compared with wild-type mice. In the absence of AEP, presentation to primary T cells of OVA and myelin oligodendrocyte glycoprotein, two Ags that contain asparagine residues within or in proximity to the relevant epitopes was unimpaired. Cathepsin (Cat) L, a lysosomal cysteine protease essential for the development to CD4 and NK T cells, fails to be processed into its mature two-chain form in AEP-deficient cells. Despite this, the numbers of CD4 and NK T cells are normal, showing that the single-chain form of Cat L is sufficient for its function in vivo. We conclude that AEP is essential for processing of Cat L but not for class II MHC-restricted Ag presentation.  相似文献   

8.
The antigenic determinant recognized by a HLA-DPw4-restricted human T cell clone specific for rabies virus was identified by using a vaccinia-rabies nonstructural phosphoprotein recombinant virus and synthetic peptides of the sequence of rabies nonstructural Ag. These peptides were selected on the basis of three models that predict T cell epitopes. The antigenic determinant recognized by the rabies virus-specific T cell clone contained a five-amino acid segment highly homologous to a sequence found in a hepatitis B surface Ag epitope that stimulates human T cells in the context of the HLA-DPw4. A preliminary model of DPw4-restricted T cell determinants is elaborated based on a hypothesis of how the 2 alpha-helical peptides may bind to this MHC molecule. Results are further discussed in the context of the usefulness in identifying DPw4-restricted T cell epitopes for the production of synthetic vaccines because this MHC class II molecule is found with high frequency in the population.  相似文献   

9.
Antigenic peptides derived from viral proteins by multiple proteolytic cleavages are bound by MHC class I molecules and recognized by CTL. Processing predominantly takes place in the cytosol of infected cells by the action of proteasomes. To identify other proteases involved in the endogenous generation of viral epitopes, specifically those derived from proteins routed to the secretory pathway, we investigated presentation of the HIV-1 ENV 10-mer epitope 318RGPGRAFVTI327 (p18) to specific CTL in the presence of diverse protease inhibitors. Both metalloproteinase and proteasome inhibitors decreased CTL recognition of the p18 epitope expressed from either native gp160 or from a chimera based on the hepatitis B virus secretory core protein as carrier protein. Processing of this epitope from both native ENV and the hepatitis B virus secretory core chimeric protein appeared to proceed by a TAP-dependent pathway that involved sequential cleavage by proteasomes and metallo-endopeptidases; however, other protease activities could replace the function of the lactacystin-sensitive proteasomes. By contrast, in a second TAP-independent pathway we detected no contribution of metallopeptidases for processing the ENV epitope from the chimeric protein. These results show that, in the classical TAP-dependent MHC class I pathway, endogenous Ag processing of viral proteins to yield the p18 10-mer epitope requires metallo-endopeptidases in addition to proteasomes.  相似文献   

10.
Class II MHC molecules on the surface of an APC present immunogenic peptides derived mainly from exogenous proteins to CD4+ T cells. During its transport to the cell surface, class II molecules intersect the endocytic pathway where they acquire peptides derived from endocytosed proteins. However, class II-restricted presentation of endogenously derived peptides can also occur. The current studies were undertaken to examine the ability of different types of APC to generate and present four different T cell determinants derived from an endogenous, nonsecreted, truncated form of hen-egg white lysozyme (HEL[1-80]-Kk). This was compared with the ability of these APC to generate the same determinants from exogenous HEL. All the peptides derived from endogenous HEL[1-80]-Kk tested, were presented by B cells to HEL-specific T cell hybridomas with an efficiency similar to presentation of the same determinants from exogenous HEL. In contrast, an I-Ak-bearing rat fibroblast was unable to generate the HEL peptide 25-43 from exogenous HEL, but could efficiently produce it from endogenous HEL[1-80]-Kk. The results indicate first, that peptides derived from an endogenous Ag can be presented by MHC class II molecules with an efficiency comparable to that of the presentation of the exogenous Ag. Second, that Ag-presenting B cells can generate the same repertoire of antigenic peptides from endogenous Ag as those generated from the exogenous protein. And third, that in contrast to B cells, certain "nonprofessional" APC can generate, from an endogenous protein, T cell determinants distinct from those generated after endocytosis of the exogenous protein. These results suggest that processing of exogenous and endogenous Ag by different APC take place in different intracellular compartments.  相似文献   

11.
The biochemical processing of and Ag presentation by MHC class II molecules were examined in B cell lines derived from pairs of identical twins discordant for type 1 diabetes. MHC class II defects detected exclusively in cells derived from the twins with autoimmunity included increased rates of transport to and subsequent turnover at the cell surface, inadequate glycosylation, and a reduced display at the cell surface of antigenic peptides. These defects appeared to be secondary to a decreased abundance of the p35 isoform of the invariant chain (Ii), a human-specific chaperone protein for MHC class II normally generated by use of an alternative translation start site. Stable transfection of diabetic B cell lines with an Ii p35 expression vector corrected the defects in MHC class II processing and peptide presentation. A defect in the expression of Ii p35 may thus result in impairment of Ag presentation by MHC class II molecules and thereby contribute to the development of type 1 diabetes in at-risk genotypes.  相似文献   

12.
Recent reports concluded that tripeptidyl peptidase (TPPII) is essential for MHC class I Ag presentation and that the proteasome in vivo mainly releases peptides 16 residues or longer that require processing by TPPII. However, we find that eliminating TPPII from human cells using small interfering RNA did not decrease the overall supply of peptides to MHC class I molecules and reduced only modestly the presentation of SIINFEKL from OVA, while treatment with proteasome inhibitors reduced these processes dramatically. Purified TPPII digests peptides from 6 to 30 residues long at similar rates, but eliminating TPPII in cells reduced the processing of long antigenic precursors (14-17 residues) more than short ones (9-12 residues). Therefore, TPPII appears to be the major peptidase capable of processing proteasome products longer than 14 residues. However, proteasomes in vivo (like purified proteasomes) release relatively few such peptides, and these peptides processed by TPPII require further trimming in the endoplasmic reticulum (ER) by ER aminopeptidase 1 for presentation. Taken together, these observations demonstrate that TPPII plays a specialized role in Ag processing and one that is not essential for the generation of most presented peptides. Moreover, these findings reveal that three sequential proteolytic steps (by proteasomes, TPPII, and then ER aminopepsidase 1) are required for the generation of a subset of epitopes.  相似文献   

13.
The adaptive immune response depends on the creation of suitable peptides from foreign antigens for display on MHC molecules to T lymphocytes. Similarly, MHC-restricted display of peptides derived from self proteins results in the elimination of many potentially autoreactive T cells. Different proteolytic systems are used to generate the peptides that are displayed as T cell epitopes on class I compared with class II MHC molecules. In the case of class II MHC molecules, the proteases that reside within the endosome/lysosome system of antigen-presenting cells are responsible; surprisingly, however, there are relatively few data on which enzymes are involved. Recently we have asked whether proteolysis is required simply in a generic sense, or whether the action of particular enzymes is needed to generate specific class II MHC-associated T cell epitopes. Using the recently identified mammalian asparagine endopeptidase as an example, we review recent evidence that individual enzymes can make clear and non-redundant contributions to MHC-restricted peptide display.  相似文献   

14.
MHC class I molecules display peptides selected from a poorly characterized pool of peptides available in the endoplasmic reticulum. We analyzed the diversity of peptides available to MHC class I molecules by monitoring the generation of an OVA-derived octapeptide, OVA257-264 (SL8), and its C-terminally extended analog, SL8-I. The poorly antigenic SL8-I could be detected in cell extracts only after its conversion to the readily detectable SL8 with carboxypeptidase Y. Analysis of extracts from cells expressing the minimal precursor Met-SL8-I by this method revealed the presence of SL8/Kb and the extended SL8-I/Kb complexes, indicating that the peptide pool contained both peptides. In contrast, cells expressing full length OVA generated only the SL8/Kb complex, demonstrating that the peptide pool generated from the full length precursor contained only a subset of potential MHC-binding peptides. Deletion analysis revealed that SL8-I was generated only from precursors lacking additional C-terminal flanking residues, suggesting that the generation of the C terminus of the SL8 peptide involves a specific endopeptidase cleavage. To investigate the protease responsible for this cleavage, we tested the effect of different protease inhibitors on the generation of the SL8 and SL8-I peptides. Only the proteasome inhibitors blocked generation of SL8, but not SL8-I. These findings demonstrate that the specificities of the proteases in the Ag-processing pathway, which include but are not limited to the proteasome, limit the diversity of peptides available for binding by MHC class I molecules in the endoplasmic reticulum.  相似文献   

15.
Tripeptidyl peptidase II (TPPII) is an oligopeptidase forming giant complexes in the cytosol that have high exo-, but also, endoproteolytic activity. Immunohistochemically, the complexes appear as distinct foci in the cytosol. In part controversial biochemical and functional studies have suggested that TPPII contributes, on the one hand, positively to Ag processing by generating epitope carboxyl termini or by trimming epitope precursors, and, on the other, negatively by destroying potentially antigenic peptides. To clarify which of these roles is predominant, we generated and analyzed TPPII-deficient mice. Cell surface levels of MHC class I peptide complexes tended to be increased on most cell types of these mice. Although presentation of three individual epitopes derived from lymphocytic choriomeningitis virus was not elevated on TPPII-/- cells, that of the immunodominant OVA epitope SIINFEKL was significantly enhanced. Consistent with this, degradation of a synthetic peptide corresponding to the OVA epitope and of another corresponding to a precursor thereof, both being proteasomally generated OVA fragments, was delayed in TPPII-deficient cytosolic extracts. In addition, dendritic cell cross-presentation of phagocytosed OVA and of OVA internalized as an immune complex was increased to about the same level as direct presentation of the Ag. The data suggest a moderate, predominantly destructive role of TPPII in class I Ag processing, in line with our finding that TPPII is not induced by IFN-gamma, which up-regulates numerous, predominantly constructive components of the Ag processing and presentation machinery.  相似文献   

16.
Following viral infection, cells rapidly present peptides from newly synthesized viral proteins on MHC class I molecules, likely from rapidly degraded forms of nascent proteins. The nature of these defective ribosomal products (DRiPs) remains largely undefined. Using inhibitors of RNA polymerase II that block influenza A virus neuraminidase (NA) mRNA export from the nucleus and inhibit cytoplasmic NA translation, we demonstrate a surprising disconnect between levels of NA translation and generation of SIINFEKL peptide genetically inserted into the NA stalk. A 33-fold reduction in NA expression is accompanied by only a 5-fold reduction in K(b)-SIINFEKL complex cell-surface expression, resulting in a net 6-fold increase in the overall efficiency of Ag presentation. Although the proteasome inhibitor MG132 completely blocked K(b)-SIINFEKL complex generation, we were unable to biochemically detect a MG132-dependent cohort of NA DRiPs relevant for Ag processing, suggesting that a minute population of DRiPs is a highly efficient source of antigenic peptides. These data support the idea that Ag processing uses compartmentalized translation, perhaps even in the nucleus itself, to increase the efficiency of the generation of class I peptide ligands.  相似文献   

17.
Proteasomes are the major source for the generation of peptides bound by MHC class I molecules. To study the functional relevance of the IFN-gamma-inducible proteasome subunits low molecular mass protein 2 (LMP2), LMP7, and mouse embryonal cell (MEC) ligand 1 in Ag processing and concomitantly that of immunoproteasomes, we established the tetracycline-regulated mouse cell line MEC217, allowing the titrable formation of immunoproteasomes. Infection of MEC217 cells with Adenovirus type 5 (Ad5) and analysis of Ag presentation with Ad5-specific CTL showed that cells containing immunoproteasomes processed the viral early 1B protein (E1B)-derived epitope E1B192-200 with increased efficiency, thus allowing a faster detection of viral entry in induced cells. Importantly, optimal CTL activation was already achieved at submaximal immunosubunit expression. In contrast, digestion of E1B-polypeptide with purified proteasomes in vitro yielded E1B192-200 at quantities that were proportional to the relative contents of immunosubunits. Our data provide evidence that the IFN-gamma-inducible proteasome subunits, when present at relatively low levels as at initial stages of infection, already increase the efficiency of antigenic peptide generation and thereby enhance MHC class I Ag processing in infected cells.  相似文献   

18.
The transporter associated with antigen processing (TAP) binds peptides in its cytosolic part and subsequently translocates the peptides into the lumen of the endoplasmic reticulum (ER), where assembly of major histocompatibility complex (MHC) class I and peptide takes place. Tapasin is a subunit of the TAP complex and binds both to TAP1 and MHC class I. In the absence of tapasin, the assembly of MHC class I in the ER is impaired, and the surface expression is reduced. To clarify the function of tapasin in the processing of antigenic peptides, we studied the interaction of peptide and TAP, peptide transport across the membrane of the ER, and association of peptides with MHC class I molecules in the microsomes derived from tapasin mutant cell line 721.220, its sister cell line 721.221 expressing tapasin, and their HLA-A2 transfectants. The binding of peptides to TAP in tapasin mutant 721.220 cells was significantly diminished in comparison with 721.221 cells. Impaired peptide-TAP interaction resulted in a defective peptide transport in tapasin mutant 721.220 cells. Interestingly, despite the diminished peptide binding to TAP, the transport rate of TAP-associated peptides was not significantly altered in 721.220 cells. After transfection of tapasin cDNA into 721.220 cells, efficient peptide-TAP interaction was restored. Thus, we conclude that tapasin is required for efficient peptide-TAP interaction.  相似文献   

19.
To detect viral infections and tumors, CD8+ T lymphocytes monitor cells for the presence of antigenic peptides bound to MHC class I molecules. The majority of MHC class I-presented peptides are generated from the cleavage of cellular and viral proteins by the ubiquitin-proteasome pathway. Many of the oligopeptides produced by this process are too long to stably bind to MHC class I molecules and require further trimming for presentation. Leucine aminopeptidase (LAP) is an IFN-inducible cytosolic aminopeptidase that can trim precursor peptides to mature epitopes and has been thought to play an important role in Ag presentation. To examine the role of LAP in generating MHC class I peptides in vivo, we generated LAP-deficient mice and LAP-deficient cell lines. These mutant mice and cells are viable and grow normally. The trimming of peptides in LAP-deficient cells is not reduced under basal conditions or after stimulation with IFN. Similarly, there is no reduction in presentation of peptides from precursor or full-length Ag constructs or in the overall supply of peptides from cellular proteins to MHC class I molecules even after stimulation with IFN. After viral infection, LAP-deficient mice generate normal CTL responses to seven epitopes from three different viruses. These data demonstrate that LAP is not an essential enzyme for generating most MHC class I-presented peptides and reveal redundancy in the function of cellular aminopeptidases.  相似文献   

20.
The Ag receptor of cytotoxic CD8+ T lymphocytes recognizes peptides of 8-10 aa bound to MHC class I molecules. This Ag recognition event leads to the activation of the CD8+ lymphocyte and subsequent lysis of the target cell. Altered peptide ligands are analogues derived from the original antigenic peptide that commonly carry amino acid substitutions at TCR contact residues. TCR engagement by these altered peptide ligands usually impairs normal T cell function. Some of these altered peptide ligands (antagonists) are able to specifically antagonize and inhibit T cell activation induced by the wild-type antigenic peptide. Despite significant advances made in understanding TCR antagonism, the molecular interactions between the TCR and the MHC/peptide complex responsible for the inhibitory activity of antagonist peptides remain elusive. To approach this question, we have identified altered peptide ligands derived from the vesicular stomatitis virus peptide (RGYVYQGL) that specifically antagonize an H-2Kb/vesicular stomatitis virus-specific TCR. Furthermore, by site-directed mutagenesis, we altered single amino acid residues of the complementarity-determining region 3 of the beta-chain of this TCR and tested the effect of these point mutations on Ag recognition and TCR antagonism. Here we show that a single amino acid change on the TCR CDR3 beta loop can modulate the TCR-antagonistic properties of an altered peptide ligand. Our results highlight the role of the TCR complementarity-determining region 3 loops for controlling the nature of the T cell response to TCR/altered peptide ligand interactions, including those leading to TCR antagonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号