首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human embryonic stem (ES) cell lines are one of the possible sources of cardiac myocytes to be transplanted in patients with end-staged heart failure. However, prior to the application of human of ES cells for heart failure therapy, it is critical to validate their clinical use in large animals such as primates. Cynomolgus monkey ES cells have similar properties to human ES cells and can be used for primate studies. We demonstrate that 24-h stimulation by a histone deacetylase inhibitor, trichostatin A (TSA) facilitated myocardial differentiation of monkey ES cells with embryonic bodies that were seeded on gelatin-coated dishes. TSA-induced acetylating of histone-3/4 and expression of p300, one of the intrinsic histone acetyltransferases. Thus, such induction as well as inhibition of histone deacetylase may be involved in TSA-induced differentiation of cynomolgus monkey ES cells into cardiomyocytes.  相似文献   

2.
Self-renewal and pluripotency of embryonic stem (ES) cells are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct4, Nanog and Sox2. The mechanism regulating these signaling cascades in ES cells is of great interest. Recently, we have demonstrated that natriuretic peptide receptor A (NPR-A), a specific receptor for atrial and brain natriuretic peptides (ANP and BNP, respectively), is expressed in pre-implantation embryos and in ES cells. Here, we examined whether NPR-A is involved in the maintenance of ES cell pluripotency. RNA interference-mediated knockdown of NPR-A resulted in phenotypic changes, indicative of differentiation, downregulation of pluripotency factors (such as Oct4, Nanog and Sox2) and upregulation of differentiation genes. NPR-A knockdown also resulted in a marked downregulation of phosphorylated Akt. Furthermore, NPR-A knockdown induced accumulation of ES cells in the G1 phase of the cell cycle. Interestingly, we found that ANP was expressed in self-renewing ES cells, whereas its level was reduced after ES cell differentiation. Treatment of ES cells with ANP upregulated the expression of Oct4, Nanog and phosphorylated Akt, and this upregulation depended on NPR-A signaling, because it was completely reversed by pretreatment with either an NPR-A antagonist or a cGMP-dependent protein kinase inhibitor. These findings provide a novel role for NPR-A in the maintenance of self-renewal and pluripotency of ES cells.  相似文献   

3.
Pathological cardiac hypertrophy induced by adrenergic overactivation can subsequently develop to heart failure which remains as a leading cause of mortality worldwide. Tanshinone IIA is a lipid-soluble pharmacologically active compound extracted from the rhizome of the Chinese herb Salvia miltiorrhiza, a well-known traditional Chinese medicine used for the treatment of cardiovascular disorders. However, little is know about the effect of Tanshinone IIA on cardiac hypertrophy. The present study was aimed to investigate whether Tanshinone IIA prevents cardiac hypertrophy induced by isoproterenol (ISO) and to clarify its possible mechanisms. Cardiomyocytes hypertrophy was induced by ISO 10 μM for 48 h with or without Tanshinone IIA 10, 30, 100 μM pretreatment, and evaluated by determining the cell size and the expression of ANP, BNP, β-MHC, Calcineurin, and NFATc3 by real-time PCR and western blot. We found that Tanshinone IIA pretreatment attenuated the enlargement of cell surface area induced by ISO in cultured cardiomyocytes. The mRNA level of ANP, BNP and β-MHC was obviously elevated in ISO-treated cardiac cells, which was effectively inhibited by Tanshinone IIA. Moreover, we found that Tanshinone IIA pretreatment could prevent the augment of intracellular calcium transient in ISO-treated cardiomyocytes. The further study revealed that Calcineurin, NFATc3, ANP, BNP and β-MHC proteins were upregulated by ISO in ventricular myocytes, and Tanshinone IIA pretreatment significantly attenuate the increased expression of Calcineurin, NFATc3, ANP, BNP and β-MHC proteins. In summary, Tanshinone IIA attenuated cardiomyocyte hypertrophy induced by ISO through inhibiting Calcineurin/NFATc3 pathway, which provides new insights into the pharmacological role and therapeutic mechanism of Tanshinone IIA in heart diseases.  相似文献   

4.
Monkey embryonic stem (ES) cells have characteristics that are similar to human ES cells, and might be useful as a substitute model for preclinical research. When embryoid bodies (EBs) formed from monkey ES cells were cultured, expression of many hepatocyte-related genes including cytochrome P450 (Cyp) 3a and Cyp7a1 was observed. Hepatocytes were immunocytochemically observed using antibodies against albumin (ALB), cytokeratin-8/18, and α1-antitrypsin in the developing EBs. The in vitro differentiation potential of monkey ES cells into the hepatic lineage prompted us to examine the transplantability of monkey EB cells. As an initial approach to assess the repopulation potential, we transplanted EB cells into immunodeficient urokinase-type plasminogen activator transgenic mice that undergo liver failure. After transplantation, the hepatocyte colonies expressing monkey ALB were observed in the mouse liver. Fluorescence in-situ hybridization revealed that the repopulating hepatocytes arise from cell fusion between transplanted monkey EB cells and recipient mouse hepatocytes. In contrast, neither cell fusion nor repopulation of hepatocytes was observed in the recipient liver after undifferentiated ES cell transplantation. These results indicate that the differentiated cells in developing monkey EBs, but not contaminating ES cells, generate functional hepatocytes by cell fusion with recipient mouse hepatocytes, and repopulate injured mouse liver.  相似文献   

5.
6.
7.
8.
9.
The molecules and environment that direct pluripotent stem cell differentiation into cardiomyocytes are largely unknown. Here, we determined a critical role of receptor tyrosine kinase, EphB4, in regulating cardiomyocyte generation from embryonic stem (ES) cells through endothelial cells. The number of spontaneous contracting cardiomyocytes, and the expression of cardiac‐specific genes, including α‐MHC and MLC‐2V, was significantly decreased in EphB4‐null ES cells. EphB4 was expressed in endothelial cells underneath contracting cardiomyocytes, but not in cardiomyocytes. Angiogenic inhibitors, including endostatin and angiostatin, inhibited endothelial cell differentiation and diminished cardiomyogenesis in ES cells. Generation of functional cardiomyocytes and the expression of cardiac‐specific genes were significantly enhanced by co‐culture of ES cells with human endothelial cells. Furthermore, the defects of cardiomyocyte differentiation in EphB4‐deficient ES cells were rescued by human endothelial cells. For the first time, our study demonstrated that endothelial cells play an essential role in facilitating cardiomyocyte differentiation from pluripotent stem cells. EphB4 signaling is a critical component of the endothelial niche to regulate regeneration of cardiomyocytes. J. Cell. Biochem. 111: 29–39, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells. Utilizing a pitched-blade-turbine, parameters for optimal cell expansion as well as efficient ES cell differentiation were established. Optimization of stirring conditions resulted in the generation of high-density suspension cultures containing 12.5 x 10(6) cells/mL after 9 days of differentiation. Approximately 30%-40% of the EBs formed in this process vigorously contracted, indicating robust cardiomyogenic induction. An ES cell clone carrying a recombinant DNA molecule comprised of the cardiomyocyte-restricted alpha myosin heavy chain (alphaMHC) promoter and a neomycin resistance gene was used to establish the utility of this bioprocess to efficiently generate ES-derived cardiomyocytes. The genetically engineered ES cells were cultured directly in the stirred bioreactor for 9 days, followed by antibiotic treatment for another 9 days. The protocol resulted in the generation of essentially pure cardiomyocyte cultures, with a total yield of 1.28 x 10(9) cells in a single 2 L bioreactor run. This study thus provides an important step towards the large-scale generation of ES-derived cells for therapeutic and industrial applications.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.  相似文献   

12.
Atrial natriuretic peptide (ANP) binding and ANP-induced increases in cyclic guanosine monophosphate (cGMP) levels have been observed in brain microvessels (Chabrier et al., 1987; Steardo and Nathanson, 1987), suggesting that this fluid-regulating hormone may play a role in the fluid homeostasis of the brain. This study was initiated to characterize the ANP receptors in primary cultures of brain microvessel endothelial cells (BMECs). The apparent equilibrium dissociation constant, Kd, for ANP increased from 0.25 nM to 2.5 nM, and the number of ANP binding sites as determined by Scatchard analysis increased from 7,100 to 170,000 sites/cell between 2 and 10 days of culture following monolayer formation. Time- and concentration-dependent studies on the stimulation of cGMP levels by ANP indicated that guanylate cyclase-linked ANP receptors were present in BMECs. The relative abilities of ANP, brain natriuretic peptide (BNP), and a truncated analog of ANP containing amino acids 5-27 (ANP 5-27) to modulate the accumulation of cGMP was found to be ANP greater than BNP much greater than ANP 5-27. Affinity cross-linking with disuccinimidyl suberate and radiolabeled ANP followed by gel electrophoresis under reducing conditions demonstrated a single band corresponding to the 60-70 kD receptor, indicating the presence of the nonguanylate cyclase-linked ANP receptor. Radiolabeled ANP binding was examined in the presence of various concentrations of either ANP, BNP, or ANP 5-27 and suggested that a large proportion of the ANP receptors present in blood-brain barrier endothelial cells bind all of these ligands similarly. These data indicate both guanylate cyclase linked and nonguanylate cyclase linked receptors are present on BMECs and that a higher proportion of the nonguanylate cyclase linked receptors is expressed. This in vitro culture system may provide a valuable tool for the examination of ANP receptor expression and function in blood-brain barrier endothelial cells.  相似文献   

13.
Inefficient cardiomyocyte differentiation limits the therapeutic use of embryonic stem (ES) cell-derived cardiomyocytes. While large collections of proprietary chemicals had been screened to improve ES cell differentiation into cardiomyocytes, the natural product library remained unexplored. Using a mouse ES cell line transfected with a cardiomyocyte-specific α-myosin heavy chain promoter-driven enhanced green fluorescent protein (EGFP) reporter, we screened 24 natural products with known cardioprotective actions. Salvianolic acid B (saB), while produced minimal effect on its own, concentration-dependently synergized with vitamin C in inducing cardiomyocyte differentiation, as demonstrated by an increase in EGFP+ cells, beating area in embryoid bodies, and expression of cardiomyocyte maturity markers. This synergy is specific to cardiomyocyte differentiation, and is involved with collagen synthesis. The present study demonstrates the saB-vitamin C synergy in inducing ES cell differentiation into matured and functional cardiomyocytes, and this may lead to a practicable cocktail approach to generate ES cell-derived cardiomyocytes for cardiac stem cell therapy.  相似文献   

14.
15.
16.
Oct-4 expression in pluripotent cells of the rhesus monkey   总被引:2,自引:0,他引:2  
  相似文献   

17.
The expression of the natriuretic peptide system in the human ocular ciliary epithelium (CE) and in cultured nonpigmented (NPE) ciliary epithelial cells was examined. By RT-PCR and DNA sequencing, we demonstrated that the CE and NPE cells express mRNA for (i) ANP; (ii) BNP; (iii) NPR-A, NPR-B, and NPR-C receptors; and (iv) the neutral endopeptidase 24.11. Radioimmunoassay results indicate that BNP is secreted by cultured NPE cells at much higher levels than ANP. NPR-A and NPR-B receptors elicited a cGMP response to ANP, BNP, and CNP, in a rank order of potency (CNP > ANP >/= BNP), indicative that the NPR-B receptor is predominant in NPE cells. A71915, an inhibitor of NPR-A activity, attenuated (65-75%) cGMP response to ANP and BNP, but not to CNP. C-ANP4-23 elicited an inhibitory effect (30-37%) on basal levels of cAMP in NPE cells and on forskolin NPE-treated cells, indicative that the NPR-C receptor is functional in these cells. PMA induced, in NPE cells, a long-term downregulation (75-85%) of NPR-C receptor mRNA, but not of NPR-A or NPR-B receptor mRNA, suggesting a differential regulation of NPR-C receptor mRNA via activation of PKC. Collectively, our data provide molecular evidence that all the components of the natriuretic peptide system with the exception of CNP are coexpressed in the ocular NPE ciliary epithelial cells, where they may function as local autocrine/paracrine modulators to influence eye pressure.  相似文献   

18.
Atrial natriuretic peptide (ANP), brain type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) comprise a family of natriuretic peptides that mediate their biological effects through three natriuretic peptide receptor subtypes, NPR-A (ANP, BNP), NPR-B (CNP) and NPR-C (ANP, BNP, CNP). Several reports have provided evidence for the expression of ANP and specific binding sites for ANP in the pancreas. The purpose of this study was to identify the ANP receptor subtype and to localize its expression to a specific cell type in the human pancreas. NPR-C immunoreactivity, but neither ANP nor NPR-A, was detected in human islets by immunofluorescent staining. No immunostaining was observed in the exocrine pancreas or ductal structures. Double-staining revealed that NPR-C was expressed mainly in the glucagon-containing alpha cells. NPR-C mRNA and protein were detected in isolated human islets by RT-PCR and Western blot analysis, respectively. NPR-C expression was also detected by immunofluorescent staining in glucagonoma but not in insulinoma. ANP, as well as BNP and CNP, stimulated glucagon secretion from perifused human islets (1,111 ± 55% vs. basal [7.3 fmol/min]; P < 0.001). This response was mimicked by cANP(4–23), a selective agonist of NPR-C. In conclusion, the NPR-C receptor is expressed in normal and neoplastic human alpha cells. These findings suggest a role for natriuretic peptides in the regulation of glucagon secretion from human alpha cells.  相似文献   

19.
Passive stretch of the heart has a direct effect on cardiomyocytes and other cell types including cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells (VSMCs). Cardiomyocytes are targets for the action of peptide growth factors found in myocardium, suggesting an autocrine or paracrine model of the hypertrophic process. In this study we examined stretch-dependent cellular communication between cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. Stationary cardiomyocytes were incubated with stretch-conditioned medium (CM0-CM60) derived from stretched (for 0-60 min) cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. The expression levels of protooncogenes (as c-fos, c-jun, and fra-1) were measured, and as an indication of a hypertrophic response the expression of atrial natriuretic peptide (ANP) was measured. Stationary cardiomyocytes that have been incubated for 30 min with CM from stretched (for 0-60 min) cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs showed distinct gene expression patterns that were time-dependent and cell-type specific. In stationary cardiomyocytes, CM derived from stretched cardiomyocytes caused decreased c-fos and fra-1 expression by 37 and 20%, respectively (CM30), elevated c-jun expression by 20% (CM45-CM60), and increased ANP expression by 106% (CM45). CM derived from stretched cardiac fibroblasts caused increased c-fos expression by 41% (CM60), no significant changes in c-jun expression, and increased fra-1 and ANP expression by 39 and 20%, respectively (CM45). CM derived from stretched VSMCs induced an initial decrease in c-fos expression followed by an increase of 13% (CM45) and induced increased c-jun, fra-1, and ANP expression by 39, 24, and 22%, respectively. CM15-CM60 derived from stretched endothelial cells caused decreased c-fos, c-jun and fra-1 expression by 20, 25, and 25%, respectively, and increased ANP expression by 18%. Our data indicate that gene expression of cardiomyocytes in stretched myocardium is regulated by mediators released by cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. This observation emphasizes the involvement of nonmyocyte cells in the early stages of cardiomyocyte hypertrophy caused by cardiac stretch.  相似文献   

20.
Monkey embryonic stem cells differentiate into adipocytes in vitro   总被引:1,自引:0,他引:1  
Production of functional adipocytes is important in adipocyte research and regenerative medicine. In this paper, we describe the differentiation of monkey embryonic stem (ES) cells into insulin-responsive adipocytes. Treatment of embryoid body (EB) outgrowth with adipogenic hormones induced the expression of adipocyte-specific genes, such as PPARgamma, C/EBPalpha, aP2, insulin receptor, and GLUT4. Expression of adipocytokines, leptin and adiponectin, was also detected. Furthermore, translocation of GLUT4 was observed by insulin stimulation in differentiated adipocytes. These results suggested that monkey ES cells can be a useful tool for studying adipogenesis in primate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号