首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
In total, 196 two- to 32-cell bovine embryo and 104 blastocysts were obtained by the in vitro fertilization of follicular oocytes matured in vitro, and 15 blastocysts fertilized in vivo were used. Chromosomal anomalies in these embryos and the inner cell mass (ICM) separated immunologically were investigated. Chromosomal anomalies were observed in 12.1% (5/41) of 2-cell embryos, 20.0-36.4% of 4- to 16-cell embryos, 7.1% (1/14) of 17- to 32-cell embryos, 44.2% (15/34) of blastocysts, and 18.6% (13/70) of ICM cells derived from in vitro fertilization. These anomalies were mainly 3N and 4N at 2-cell stage, 1N and 1N/2N at 4- to 32-cell stages, and 2N/4N in blastocysts and in their ICM cells. Chromosomal anomalies of blastocysts from in vivo fertilization and their ICM were observed in 20.0% (1/5) of blastocysts and 33.3% (3/9) of ICM cells and these compositions were mainly 2N/4N. These results indicate that the abnormalities at early and blastocyst stages of embryos derived from in vitro fertilization were caused by abnormal fertilization in vitro and abnormal cleavage, respectively. Furthermore, a definite location of the chromosomal anomalies was observed in the trophectoderm of blastocysts derived from in vitro fertilization.  相似文献   

2.
The total number of cells and the incidence of chromosomal anomalies in bovine blastocysts cultured in vitro or in vivo in rabbit oviducts were investigated from the four-cell stage after in-vitro fertilization of in-vitro matured follicular oocytes. The total number of cells (80 vs 179) in the oviduct-cultured blastocysts was nearly double that (43 vs 80) of blastocysts cultured in vitro at early and expanded blastocyst stages. In both culture systems, the total number of cells increased with the stage of development. Mitotic index (number of metaphase plates/total number of cells) of blastocysts decreased with development from early (11.5 vs 13.8%) to hatched blastocyst stages (4.8 vs 2.8%) in in-vitro and in-vivo culture systems, respectively. Overall, chromosomal anomalies were observed in 37.5% (27 27 ) of embryos cultured in vitro and in 28.0% (7 24 ) cultured in vivo, respectively. Incidence of chromosomal anomalies did not depend on such factors as culture system or stage of development. Most chromosomal anomalies were polyploid and mixoploid cells.  相似文献   

3.
The morphology and proportion of inner cell mass (ICM) of bovine blastocysts cultured in vitro or in vivo in rabbit oviducts after in-vitro fertilization of in-vitro matured follicular oocytes were compared with those of blastocysts fertilized in vivo by a differential fluorochrome staining technique. The delineation of each ICM cell was improved by the transfer of embryos derived from in-vitro fertilization to a rabbit oviduct although the cell-cell contacts of ICM cells were not as tight as those from in-vivo fertilization. The proportions (15.8 and 14.9%) of ICM in blastocysts cultured in vitro at early and expanded stages were significantly lower than those cultured in rabbit oviducts after in-vitro fertilization and fertilized in vivo. These results show that the transfer of bovine embryos derived from in-vitro fertilization to the rabbit oviduct increased the proliferation of ICM cells to the level of embryos fertilized in vivo although the cell-cell contact of ICM cell is not improved by the process.  相似文献   

4.
The proportion of total cells in the blastocyst allocated to the inner cell mass (ICM) and trophectoderm (TE) is important for future development and may be a sensitive indicator to evaluate culture conditions. The number of cells and their distribution within the two primary cell lineages were determined for the rabbit embryo developing in vivo after superovulation or nonsuperovulation or embryo transfer and compared with embryos developing in vitro. Comparisons were made with cultured embryos or embryos grown in vivo until 3.5, 4.0, and 4.5 days of age. Embryos from superovulated rabbits developed in vivo for 3.5, 4.0, and 4.5 days, respectively, had 361, 758, and 902 total cells (P<0.05), and in nonsuperovulated rabbits 130, 414, and 905 total cells (P<0.05), with increasing proportions of ICM cells over time (P<0.05). One-cell embryos recovered from superovulated females and transferred to nonsuperovulated recipients developed more slowly with 70, 299, and 550 total cells after 3.5, 4.0, and 4.5 days of culture (P<0.05), respectively. The proportion of ICM cells increased with age of the embryo. Corresponding values for one-cell embryos cultured in vitro resulted in 70, 299, and 550 total cells (P<0.05). However, in vitro culture of morula-stage embryos in the presence of fetal bovine serum for 24 hr did not delay growth. In addition, the proportions of ICM/total cells were 0.17, 0.25, and 0.29 for embryos developing in vitro at 3.5, 4.0, and 4.5 days, respectively, similar to those for embryos developing in vivo at each of the three recovery times. These data establish for the first time the number and proportion of cells allocated to the ICM of the rabbit embryo developing in vivo or under defined conditions in vitro. © 1995 Wiley-Liss, Inc.  相似文献   

5.
We evaluated the in vitro development of porcine zygotes that were cultured in a novel culture medium, porcine zygote medium (PZM), under different conditions and compared to in vivo development. The viability of these zygotes to full term after culture was also evaluated by embryo transfer to recipients. Porcine single-cell zygotes were collected from gilts on Day 2 after hCG injection. Culture of zygotes in PZM containing 3 mg/ml of BSA (PZM-3) produced better results in terms of proportion of Day 6 blastocysts, Day 8 hatching rate, and numbers of inner cell mass (ICM) cells and total cells in Day 8 embryos than that in North Carolina State University (NCSU)-23 medium. In culture with PZM-3, embryo development was optimized in an atmosphere of 5% CO2:5% O2:90% N2 compared to 5% CO2 in air. The ICM and total cell numbers in Day 6 embryos cultured in PZM-3 or in PZM-3 in which BSA was replaced with 3 mg/ml of polyvinyl alcohol (PZM-4) were also greater than those of NCSU-23 but less than those developed in vivo. However, no difference was found in the ratio of ICM to total cells among embryos developed in PZM-3, PZM-4, or in vivo. When the Day 6 embryos that developed in PZM-4 (99 embryos) or in vivo (100 embryos) were each transferred into six recipients, no difference was found in the farrowing rate (83.3% for both treatments) and in the number of piglets born (33 and 42 piglets, respectively). Our results indicate that porcine zygotes can develop into blastocysts in a chemically defined medium and to full term by transfer to recipients after culture.  相似文献   

6.
The susceptibility of early bovine embryos to developmental arrest ("blocking") in vitro was examined. Embryos, obtained from superovulated donors, were cultured in vitro in Ham's F10 culture medium or in vivo in sheep oviducts. Treatments were terminated on Day 7 post-donor estrus (estrus = day 0), and the embryos were evaluated for development. Experiment 1 tested whether the 8- to 16-cell block was reversible. One- to two-cell embryos were cultured in vitro to the 8-cell stage (2 d), then in vivo for 3 d; controls were cultured in vitro or in vivo for 5 d. Forty-two percent (19 45 ) of in vivo controls developed normally; none (0 55 ; 0%) of the in vitro controls cleaved past the 9- to 16-cell stage. Only 4% (2 48 ) of the embryos cultured to eight cells in vitro developed normally after culture in sheep oviducts, indicating that the block was irreversible. Irreversibility was not caused by overt cell death, since 33 33 (100%) of blocked embryos responded positively to fluorescien diacetate vital staining. Experiment 2 tested the effect of in vitro exposure at specific cell stages on subsequent in vivo development. Embryos at the 1- to 2-, 3- to 4-, 5- to 8- and 9- to 16-cell stages were assigned randomly to one of the following treatments: in vivo culture; in vitro culture; or 24 h in vitro culture, followed by in vivo culture. Subsequent in vivo development was affected by 24 h of in vitro culture (P<0.05) only in 3- to 4-cell embryos (11 41 , 27% vs 22 41 , 54% for in vivo controls). We conclude that 1) the block is a manifestation of in vitro exposure during the four- to eight-cell stage, and 2) the block, while irreversible, is not the result of overt embryonic death.  相似文献   

7.
In vivo bovine embryos were obtained by nonsurgical flushing of uterine horns of cows submitted to superovulatory treatment, while in vitro embryos were generated from oocytes collected from slaughtered donors. Lucifer Yellow injected into single blastomeres did not diffuse into neighboring cells until the morula stage in in vivo embryos and the blastocyst stage in in vitro embryos. In both cases diffusion was limited to a few cells. In contrast, diffusion was extensive in microsurgically isolated inner cell mass (ICM) but absent in the trophectoderm (TE). At the blastocyst stage, diffusion was always more extensive in in vivo than in in vitro embryos. Ultrastructural analyses confirmed these functional observations, and gap junction-like structures were observed at the blastocyst stage. These structures were diffuse in the ICM of in vivo embryos, scarce in the ICM of in vitro embryos and in the TE of in vivo embryos, and not observed in the TE of in vitro embryos. Blastomeres at all stages of development from the 2-cell stage to the blastocyst stage in in vitro embryos and at the morula and blastocyst stage in in vivo embryos were electrically coupled, and the junctional conductance (Gj) decreased in in vitro embryos from 4.18 +/- 1.70 nS (2-cell stage) to 0.37 +/- 0.12 nS (blastocyst stage). At each developmental stage, in vivo embryos showed a significantly (P < 0. 05) higher Gj than in vitro-produced embryos. Moreover, a significantly (P < 0.01) higher Gj was found in isolated ICM than in the respective blastocyst in both in vivo- and in vitro-produced embryos (3.5 +/- 1.4 vs. 0.7 +/- 0.3 and 2.6 +/- 1.6 vs. 0.37 +/- 0. 12 nS, respectively). The electrical coupling in absence of dye coupling in the early bovine embryo agrees with observations for embryos from other phyla. The late and reduced expression of intercellular communicative devices in in vitro-produced embryos may be one of the factors explaining their developmental low efficiency.  相似文献   

8.
Choi YH  Lee BC  Lim JM  Kang SK  Hwang WS 《Theriogenology》2002,58(6):1187-1197
This study was conducted to establish an effective culture system for supporting in vitro development of cloned bovine embryos and to evaluate whether improved development in the optimal culture system could contribute to enhancing pregnancy and delivery outcomes after transfer. Enucleated oocytes at the metaphase II stage were reconstructed with serum-starved ear fibroblasts and cloned embryos were subsequently cultured for 168 h in vitro. In Experiment 1, cloned embryos were cultured in either modified Charles Rosenkrans 2 amino acid medium (mCR2aa) or modified synthetic oviduct fluid medium (mSOF). More (P < 0.05) 2-cell embryos (78% versus 92%), morulae (51% versus 69%) and blastocysts (2% versus 39%) were obtained after culture in mSOF than after culture in mCR2aa. In Experiment 2, cloned embryos were successively cultured in mSOF supplemented with various macromolecules during different periods of culture. A successive culture of oocytes in BSA-containing medium for 72 h and then in FBS-containing medium for the next 96 h yielded a higher rate of blastocyst formation (49% versus 25-36%) than other combinations (BSA to BSA or PVA to PVA, BSA or FBS). This macromolecule supplementation also significantly increased the number of total blastomeres (117.3 cells/blastocyst) and inner cell mass cells (ICM, 49.7 cells/blastocyst), and the ratio of ICM cells to trophoblast cells (TB, 0.98). In Experiment 3, a total of 85 blastocysts obtained from each 2-step culture were transferred individually to recipient cows at the end of the culture period and 32 pregnancies (38%) were diagnosed on Day 60 after transfer. However, no (P > 0.05) significant differences due to culture were apparent in the pregnancy outcome. Although six calves were produced using the 2-step culture regime of either BSA-BSA or PVA-FBS, no calves were produced using the successive culture of BSA then FBS, which optimized preimplantation development. In conclusion, mSOF has more potential to support the development of clone embryos than mCR2aa, and successive supplementation of BSA and FBS to mSOF further promotes blastocyst formation. However, enhanced development in vitro might not directly contribute to improving pregnancy outcomes.  相似文献   

9.
Microinjection and in vitro culture procedures were developed to produce transgenic bovine embryos after in vitro fertilization of in vitro matured oocytes. In Experiment I, zygotes were subjected to pronuclear microinjection of DNA 18 or 24 h following addition of spermatozoa to oocytes. Microinjections were performed in either Hepes-buffered TCM-199 or modified Dulbecco's phosphate-buffered saline without glucose. Viability of embryos was similar at both injection times and for both media, as determined by morphological evaluation after culturing embryos in vitro for 10 d. In Experiment II, microinjected embryos were cultured 1) in rabbit oviducts, 2) in vitro in a 5% CO(2) in air, or 3) in a 5% CO(2) / 5% O(2) / 90% N(2) incubator. There were no significant differences between the 2 in vitro culture environments. The in vitro culture systems supported development of embryos significantly better than the rabbit oviducts; 33% of cleaved ova developed to blastocysts in vitro vs 10% in vivo; 98% of transferred ova were recovered from the rabbit oviducts. From both experiments, 6 of 92 blastocysts were positive for the microinjected DNA as determined by a polymerase chain reaction followed by gel electrophoresis.  相似文献   

10.
The incidence of chromosomal anomalies in early bovine embryos derived from follicular oocytes fertilized in vitro using sperm separated by Percoll density gradient centrifugation was investigated. Overall, chromosomal anomalies were observed in 13.7% (138/1005) of embryos. There were 14 haploids (1.4%), 2 hypodiploids (0.2%), 6 hyperdiploids (0.6%), 101 triploids (10.0%), 12 tetraploids (1.2%), 2 diploid/triploid mosaics (0.2%), and 1 diploid/tetraploid mosaic (0.1%). The frequency of triploidy was caused mainly by polyspermy. There was a significant difference in the frequency of embryos with abnormal chromosomes between the two bulls used (P < 0.005), but Percoll centrifugation did not affect the observed incidence of anomalies. The frequency of chromosomal anomalies in embryos at each stage increased with delay or arrest of development. These results suggest that the incidence of chromosomal anomalies depended on the conditions of in vitro fertilization and the arrest of development.  相似文献   

11.
In the present study, we compared the incidence of aneuploidy in in vitro fertilized domestic cat embryos (DSH-IVF) with that of African Wildcat (AWC) cloned embryos reconstructed with AWC fibroblast donor cells from different passages (AWC-NT). Fibroblast cells were cultured to passages 1 (P1), 3 (P3), 4 (P4), and 9 (P9), after which cells at each passage were karyotyped and serum-starved before being frozen for nuclear transfer. AWC-NT embryos were produced by fusion of a single AWC somatic cell at P1, P3, P4, or P9 to enucleated domestic cat cytoplast derived from in vitro matured (IVU) oocytes. DSH-IVF embryos were produced after IVU oocytes were fertilized in vitro with domestic cat spermatozoa. To determine chromosome numbers, embryos (2-4-cell) or fibroblast cells were cultured in medium containing 0.28 microg/mL of Colcemid for 22-24 h or 15-24 h, respectively. Subsequently, embryos and cells were placed in hypotonic solution, fixed, and stained for analysis of chromosome spreads by bright field microscopy. Chromosomal abnormalities in AWC fibroblast cells increased progressively during culture in vitro: P1 (43%), P3 (46%), P4 (62%), and P9 (59%). In fibroblast cells, hypoploidy (94/202, 46%) was the major chromosomal abnormality, and it occurred more frequently than hyperploidy (14/202, 7%; p < 0.05). While the percentage of hyperploid cells remained stable during all passages, the proportion of hypoploidy in fibroblast cells increased significantly after P4. The overall incidence of chromosomal abnormalities in AWC-NT embryos at P1 (45%), P3 (60%), and P4 (50%) was similar to that of the fibroblast cells from which they were derived; however, the incidence was higher for embryos reconstructed with donor fibroblasts at P9 (89%). Hypoploidy was the most common chromosomal abnormality observed in either AWC-NT or DSH-IVF embryos. AWCNT embryos reconstructed with donor cells at early passages (P1, P3, and P4) had similar frequencies of chromosomal diploidy, as did DSH-IVF embryos. Accordingly, based on the present results, for NT we are currently using cat donor cells at early passages, when the percentage of cells with chromosomal abnormalities is low. It is recommended that the chromosomal stability of each cell line be analyzed before use as NT donor cells to reduce the incidence of chromosomal anomalies in reconstructed embryos and to possibly produce a subsequent increase in cloning efficiency.  相似文献   

12.
The present experiments were conducted to determine if supplementation of the culture medium with a serum extender containing growth factors would increase development of bovine embryos into morulae or blastocysts, following in vitro maturation (IVM) and in vitro fertilization (IVF). In Experiment 1, bovine zygotes were cultured in CR1 medium supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 2, bovine zygotes were cultured in the presence of cumulus cells in CR1 medium supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 3, bovine oocytes were matured in Medium 199 supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 4, oocytes were matured in Medium 199 with 10% fetal bovine serum (FBS) or 5% FBS with serum extender. Following maturation, zygotes were cultured in CR1 medium with 10% FBS or 5 % FBS and serum extender. In all 4 experiments, the embryos were cultured in vitro until Day 7 after IVF, and development to the morula or blastocyst stage was assessed. The findings of the first 2 experiments showed that the serum extender did not directly influence embryo development but did stimulate development when cumulus cells were included in the culture system. The remaining 2 experiments showed that the serum extender did influence development through its interactions with cumulus cells during maturation and/or culture. These findings suggest that although growth factors or other products do not directly stimulate bovine embryo development their effects may be mediated through secondary cell systems.  相似文献   

13.
Embryos from superovulated female mice that developed in vitro from the two-cell stage were compared with in vivo embryos with respect to yield of blastocytes, number and types of cells, morphology in histologic section, and DNA polymerase activities. Significantly more embryos developed into blastocytes in vitro (93%) than in vivo (18%). Inner cell mass (ICM) cells comprised approximately 30% of total cells in late morula/early blastocyst stage embryos developed either in vitro or in vivo. However, the in vitro embryos developed approximately half the number of total cells as in vivo embryos, did not develop endoderm, and did not develop abembryonic trophoblast cells with morphologic characteristics of late preimplantation in vivo embryos. DNA-dependent DNA polymerase activities in in vitro embryos decreased in correspondence with the decrease in cell number resulting in per cell levels comparable to in vivo embryos. In contrast, the poly (A).oligo(dT)-dependent DNA polymerase activity was the same in embryos developing either in vitro or in vivo, indicating different regulatory mechanisms for the two enzyme activities. A variety of nutrients and growth factors in the culture medium did not increase cell numbers or DNA polymerase activities in embryos cultured for 3 days; extending the culture an additional 24 hours resulted in a loss of ICM cells and decreases in both DNA polymerase activities. These results show that the retarded growth of embryos in vitro is equally distributed between ICM and trophoblast, is not reversed by culture conditions that include serum growth factors, and is not due to decreased cellular levels of DNA polymerase activities.  相似文献   

14.
Bovine embryonic stem cell-like cell lines cultured over several passages   总被引:3,自引:0,他引:3  
Summary A total of 14 microsurgically produced zona pellucida-free bovine demi-blastocysts were cultured for 3 days in tissue culture medium (TCM) 199 supplemented with 10% heat-inactivated newborn calf serum (NBCS). Developing embryos were continuously cultured in TCM 199 plus 10% NBCS on a feeder-layer of murine embryonic fibroblasts, that had been incubated with mitomycin C (10 g/ml) for 3 h prior to the onset of embryo cultivation to block mitotic activity of the fibroblasts. After 2 days, 3 expanded blastocysts were attached to the feeder-layer and both trophoblastic cells and inner cell mass (ICM) cells became apparent on the 9th day of culture in 2 out of the 3 expanded blastocysts. Five days later, the ICM cells were disaggregated by a short-term trypsin treatment. The resulting dissociated clumps were seeded on a new murine embryonic fibroblast feeder-layer and covered with modified minimum essential medium (MEM)-Alpha with 10% fetal calf serum (FCS), 0.1 mm mercaptoethanol, 4.5 g/l glucose and 20 mm HEPES-buffer (=passage 0). To prevent differentiation of the cells, approximately 1/3 of the MEM-Alpha was replaced by MEM previously incubated on cell line 5637 containing leucaemia inhibitory factor (LIF) for 3 days. Colonies of embryonic stem cell (ES)-like cells were observed 5 days after the 1st passage. These colonies were repeatedly passaged at approximately 2-week intervals. Two bovine ES-like cell lines were established, which grew considerably slower than murine ES cells, but were lost after the 4th passage, possibly because of toxic effects of a new FCS batch. After cytogenetic analysis, 16 out of 18 metaphase plates contained an euploid number of chromosomes with 2 X-chromosomes and 58 autosomes. Distribution of G-banding on the chromosomes of ES-like cells was in accordance with the diploid set of the bovine genome. ES-like cells were fused to in vitro matured bovine oocytes and, upon successful fusion, cultured in vitro over 5 days. Successful fusion was observed in 79.8% (67/84), 31.3% initiated cleavege and 10.4% reached the 8–16 cell stage at termination of culture. Offprint requests to: H. Niemann  相似文献   

15.
Treatment of in vitro matured bovine oocytes with colcemid results in a membrane protrusion that contains maternal chromosomes, which can be easily removed by aspiration. Four experiments were designed to evaluate the overall and temporal effects of conditioned medium (CM) by bovine cumulus cells on development of nuclear transfer (NT) bovine embryos and to examine the chromosomal composition and allocation of inner cell mass (ICM) and trophectoderm (TE) of the subsequent blastocysts. The nuclear transfer embryos were cultured in various CR1aa media conditioned by preculture with bovine cumulus cells. Development to the blastocyst stage in BSA-containing CM (BCM) and serum-containing CM (SCM) were similar to co-culture group (24-30%). The 24 hr-conditioned BCM yielded higher blastocyst development than 48 and 72 hr-conditioned BCM. Temporary exposure of embryos to BCM and SCM followed by CR1aa was also studied. Morula and blastocyst development were not different among the groups cultured in BCM for 72, 96, and 168 hr, but were significantly higher (P < 0.01) than groups exposed to BCM for 24 and 48 hr, respectively. Blastocyst development in SCM for 24 hr (29%), 96 hr (25%), and 168 hr (27%) were much higher (P < 0.05) than those in SCM for 48 hr (12%) and 72 hr (10%). The analyses of chromosomal composition of the resulting blastocysts indicate approximately 80% of the blastocysts cultured in CR1aa with co-culture or groups initially exposed to BCM for 24 hr followed by culture in CR1aa were diploid. However, the incidence of diploidy were only 36-60% in SCM-cultured groups and groups cultured in BCM beyond 48 hr. Conditioned media did not affect the allocation of ICM and TE in the blastocyst. No difference was found in the ratio of inner cell mass to total cells in co-culture, BCM or SCM groups (0.424, 0.441, and 0.473, respectively). In conclusion, bovine cumulus cell-CM and CR1aa with co-culture supported comparable development and blastocyst ICM:total cell ratio of bovine NT embryos. However, CM affected the blastocyst chromosomal composition and induced higher mixploidy.  相似文献   

16.
In vitro and in vivo survival of in vitro-derived 2- to 4-cell cat embryos following cryopreservation was examined. Prefreeze 1- vs 2-step cryoprotectant exposure (Experiment 1) and warming method (Experiment 2) on zona pellucida damage and development in vitro were compared. To determine viability in vivo, frozen/thawed embryos were cultured in vitro to the morula/early blastocyst stage and transferred to synchronous recipients (Experiment 3). At 24 to 26 h after IVF, embryos were cryopreserved in 1.4 M propanediol (Pr) + 0.125 M sucrose (Su) by cooling at 0.3 degrees C/min from -6 degrees C to -30 degrees C and storing in liquid nitrogen. Autologous embryos were cultured in vitro for 7 d. After warming for 5 sec in air and 10 sec at 37 degrees C in water (Experiments 1 to 3), or at room temperature air (22 degrees C; Experiment 2), the cryoprotectant was removed and embryos were cultured in vitro for 6 d (Experiments 1 and 2). Development was assessed after staining by counting cell numbers/embryo and determining the percentages at the 2- to 4-cell (nonsurvivor), pre (5 to 15), early (16 to 32), mid (33 to 50), late (>50) morula or blastocyst stages. Post-thaw development to late morula/blastocyst after 1-step exposure (68%, 15 min Pr + Su) was higher (P< 0.05) than that after 2-step exposure (36%, 15 min Pr and 15 min Pr + Su). Both warming methods produced similar percentages of embryos with damaged zonae (13 to 15%) and equivalent development to morula/blastocyst (64 to 69%). Development in vitro to early morula/blastocyst of frozen embryos with intact zonae was similar to that of nonfrozen embryos. Following cryopreservation, most 2- to 4-cell cat embryos retained their capability for in vitro development to morula/blastocyst, and in vivo viability was demonstrated by the birth of 3 live kittens to 2 of 4 recipients following the transfer of 58 embryos.  相似文献   

17.
The present study was conducted to isolate and culture inner cell mass (ICM) primarily derived from in vitro-produced blastocysts and to develop the culture conditions for the ICM cells. In Experiment 1, immunosurgically isolated ICMs of blastocysts derived from in vitro fertilization (IVF), somatic cell nuclear transfer (SCNT) or parthenogenetic activation (PA) were seeded onto STO cells. Primary colonies from each isolated ICM were formed with a ratio of 28.9, 30.0 and 4.9%, respectively. In Experiment 2, blastocysts collected from IVF were directly seeded onto a feeder layer with or without zona pellucida (ZP), or were subjected to ICM isolation by immunosurgery. Primary colonies were formed in 36.8% of isolated ICMs and 19.4% in intact blastocysts without ZP. In Experiment 3, ICMs from IVF blastocysts were seeded onto STO cells, mouse embryonic fibroblast (MEF) or porcine uterine epithelial cells (PUEC). On STO and MEF cells, 34.5 and 22.2% of primary colonies were formed, respectively. However, no primary colony was formed on the PUEC or in feeder-free condition. In Experiment 4, ICMs from IVF blastocysts were cultured in DMEM + Ham's F10 (D/H medium), DMEM + NCSU-23 (D/N medium) or DMEM alone. When D/H medium or D/N medium was used, 21.7 or 44.4% of primary colony were formed, respectively, while no primary colony was formed in DMEM alone. These cells showed alkaline phosphatase activity and could be maintained for up to five passages. In suspension culture, cells formed embryoid bodies. These results demonstrate that porcine ICM could be isolated and cultured primarily from in vitro-produced blastocysts with a suitable culture system.  相似文献   

18.
Bhuiyan MM  Cho JK  Jang G  Park ES  Kang SK  Lee BC  Hwang WS 《Theriogenology》2004,62(8):1403-1416
The present study evaluated the effect of protein supplementation in potassium simplex optimization medium (KSOM) on bovine preimplantation embryo development. The in vitro fertilized (IVF) (Experiment 1), non-transgenic (Experiment 2) and transgenic cloned embryos (Experiment 3) were cultured for 192 h in KSOM supplemented with 0.8% BSA (KSOM-BSA), 10% FBS (KSOM-FBS) or 0.01% PVA (KSOM-PVA). Transfected cumulus cells with an expression plasmid for human alpha1-antitrypsin gene and a green fluorescent protein (GFP) marker were used to produce transgenic cloned embryos. Modified synthetic oviductal fluid (mSOF) supplemented with 0.8% BSA (mSOF-BSA) was used as a control medium. In Experiment 1, cleavage rate was significantly (P < 0.05) lower (69.1%) in IVF embryos cultured in KSOM-FBS than in KSOM-BSA (80.3%). The rate of hatching/hatched blastocyst formation was significantly (P < 0.05) lower in embryos cultured in KSOM-PVA than in KSOM-FBS (2.2% versus 10.8%). Blastocysts cultured in KSOM-FBS contained significantly (P < 0.06) higher numbers of inner cell mass cells (50.4 +/- 20.2) than those cultured in mSOF-BSA (36.9 +/- 19.2). In Experiment 2, the rate of blastocyst formation was significantly (P < 0.05) lower (20.5%) in embryos cultured in KSOM-PVA than in other culture media (33.3-38.5%). The rate of hatching/hatched blastocysts was significantly (P < 0.05) lower in KSOM-PVA (13.9%) and KSOM-FBS (17.1%) than in KSOM-BSA (30.8%) and mSOF-BSA (33.9%). The numbers of total and trophectoderm cells (104.6 +/- 32.2 and 71.7 +/- 25.5, respectively) were significantly (P < 0.05) lower in blastocysts cultured in KSOM-PVA than in KSOM-BSA (125.7 +/- 39.7 and 91.7 +/- 36.2, respectively). In Experiment 3, no significant differences in embryo development, GFP expression and blastocyst cell numbers were observed among the culture groups. In conclusion, the present study demonstrated that KSOM and mSOF supplemented with BSA were equally effective in supporting development of bovine non-transgenic and transgenic cloned embryos. Moreover, different developmental competence in response to protein supplementation of KSOM was observed between bovine non-transgenic and transgenic cloned embryos.  相似文献   

19.
The in vitro development of DNA-injected bovine zygotes, produced in vitro, was compared when cultured with or without mouse embryonic fibroblasts (MEF). The in vivo viability of the embryos produced in these in vitro culture systems was assessed by single or double transfer to recipients taken to term. For these experiments, in vitro fertilized oocytes were not injected (Experiment 1) or were injected with pBL1 gene (Experiment 2) and then cultured for 2 days in CR1aa medium supplemented with 3 mg/ml BSA at 38.5 degrees C in a humidified atmosphere of 5% CO(2) in air. Embryos that developed to the 4- to 8-cell stage at the end of this period were randomly assigned to the two cultured systems and cultured for a further 5 days in groups of 10 to 15 embryos in 0.75 ml medium. These two culture systems were CR1aa medium alone or co-culture with MEF in CR1aa medium supplemented with 10% fetal bovine serum (FBS). Every 48 h, 0.5 ml of the medium was replaced with fresh CR1aa medium and at Day 5 of culture, both media were supplemented by the addition of 5.56 mM glucose and 1x GMS-X supplement solutions. Results were assessed as morphological development of the embryos and data were analyzed by Chi-square test or Student's t-test.The development rate of in vitro fertilization (IVF)-derived embryos co-cultured with MEF (24.4%, 49/201) was significantly higher than those cultured alone (14.4%, 28/194; P<0.05) in Experiment 1. There was a similar difference between the treatments in the proportions of embryos which reached the hatching stage or hatched (10.9%, 22/201 vs. 4.1%, 8/194, respectively; P<0.05). DNA-injected embryos co-cultured with MEF (13.7%, 28/205) showed a higher developmental rate than that of the embryos cultured without MEF (6.7%, 13/193; P<0.05) in Experiment 2. Following the transfer to recipients of one or two DNA-injected blastocysts, the pregnancy rates for two culture systems were similar (MEF co-culture 27.4%, 23/84; CR1aa culture 24. 2%, 16/66). However, the numbers of calves born alive from these pregnancies were higher on the MEF co-culture group (82.6%, 19/23) than the CR1aa culture group (56.2%, 9/16). It was concluded that in vitro embryo development to the blastocyst stage and subsequent in vivo development to term of DNA-injected bovine embryos was improved in comparison to culture in CR1aa alone when the last 5 days of in vitro culture were in a MEF co-culture system.  相似文献   

20.
The in vitro viability of polyspermic pig eggs was investigated. Immature oocytes were matured and fertilized in vitro. Approximately 10 h after insemination, the eggs were centrifuged at 12 000 x g for 10 min and individually classified into two (2PN)- and poly-pronuclear (PPN, 3 or 4 pronuclei) eggs. The classified eggs were cultured in vitro or in vivo. Nuclei numbers of inner cell mass (ICM) and trophectoderm (TE) were compared between 2PN- and PPN-derived blastocysts. The frequency of development in vitro of 2PN and PPN eggs to the blastocyst stage was 53.6% and 40.7%, respectively. The mean number (8.2 +/- 0.7, n = 48) of ICM nuclei of 2PN-derived blastocysts was higher than that (4.2 +/- 0.8, n = 37) of PPN-derived blastocysts (p < 0.001), whereas there was no difference (p > 0.05) in mean numbers of total (46.7 +/- 3.4 vs. 39. 9 +/- 3.9) and TE nuclei (38.5 +/- 2.9 vs. 35.7 +/- 3.3) between the two groups. Development of 2PN and PPN eggs cultured in vivo to the blastocyst stage was 33.3% and 27.4%, respectively. The numbers of ICM and TE nuclei of these embryos cultured in vivo showed a pattern similar to that for the in vitro-produced blastocysts. Additionally, fetuses were obtained on Day 21 from both the 2PN and the PPN groups. This suggests that polyspermic pig embryos develop to the blastocyst stage and beyond, although showing a smaller ICM cell number as compared to normal embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号