首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutation has been identified that prevents Saccharomyces cerevisiae cells from growing on proline as the sole source of nitrogen, causes noninducible expression of the PUT1 and PUT2 genes, and is completely recessive. In the put3-75 mutant, the basal level of expression (ammonia as nitrogen source) of PUT1-lacZ and PUT2-lacZ gene fusions as measured by beta-galactosidase activity is reduced 4- and 7-fold, respectively, compared with the wild-type strain. Normal regulation is not restored when the cells are grown on arginine as the sole nitrogen source and put3-75 cells remain sensitive to the proline analog, L-azetidine-2-carboxylic acid, indicating that the block is not at the level of transport of the inducer, proline. In a cross between the put3-75 strain and the semidominant, constitutive mutation PUT3c-68, only parental ditype tetrads were found, indicating allelism of the two mutations. Further support for allelism derives from the comparison of enzyme levels in heteroallelic and heterozygous diploid strains. The constitutive allele appears to be fully dominant to the noninducible allele but only partially dominant to the wild type, suggesting an interaction between the wild-type and PUT3c-68 gene products. The PUT3 gene maps on chromosome XI, about 5.7 cM from the centromere. The phenotypes of alleles of the PUT3 gene, either recessive and noninducible (the put3-75 phenotype) or semidominant and constitutive (the PUT3c-68 phenotype), and their pleiotropy suggest that the PUT3 gene product is a positive activator of the proline utilization pathway.  相似文献   

2.
3.
delta 1-Pyrroline-5-carboxylate (P5C) dehydrogenase, the second enzyme in the proline utilization (Put) pathway of Saccharomyces cerevisiae and the product of the PUT2 gene, was localized to the matrix compartment by a mitochondrial fractionation procedure. This result was confirmed by demonstrating that the enzyme had limited activity toward an externally added substrate that could not penetrate the inner mitochondrial membrane (latency). To learn more about the nature of the import of this enzyme, three gene fusions were constructed that carried 5'-regulatory sequences through codons 14, 124, or 366 of the PUT2 gene ligated to the lacZ gene of Escherichia coli. When these fusions were introduced into S. cerevisiae either on multicopy plasmids or stably integrated into the genome, proline-inducible beta-galactosidase was made. The shortest gene fusion, PUT2-lacZ14, caused the production of a high level of beta-galactosidase that was found exclusively in the cytoplasm. The PUT2-lacZ124 and PUT2-lacZ366 fusions made lower levels of beta-galactosidases that were mitochondrially localized. Mitochondrial fractionation and protease-protection experiments showed that the PUT2-lacZ124 hybrid protein was located exclusively in the matrix, while the PUT2-lacZ366 hybrid was found in the matrix as well as the inner membrane. Thus, the amino-terminal 124 amino acids of P5C dehydrogenase carries sufficient information to target and deliver beta-galactosidase to the matrix compartment. The expression of the longer hybrids had deleterious effects on cell growth; PUT2-lacZ366-containing strains failed to grow on proline as the sole source of nitrogen. In the presence of the longest hybrid beta-galactosidase, the wild-type P5C dehydrogenase was still properly localized in the matrix compartment, but its activity was reduced. The nature of the effects of these hybrid proteins on cell growth is discussed.  相似文献   

4.
5.
6.
7.
8.
The PUT1 and PUT2 genes encoding the enzymes of the proline utilization pathway of Saccharomyces cerevisiae are induced by proline and activated by the product of the PUT3 gene. Two upstream activation sequences (UASs) in the PUT1 promoter were identified by homology to the PUT2 UAS. Deletion analysis of the two PUT1 UASs showed that they were functionally independent and additive in producing maximal levels of gene expression. The consensus PUT UAS is a 21-base-pair partially palindromic sequence required in vivo for induction of both genes. The results of a gel mobility shift assay demonstrated that the proline-specific UAS is the binding site of a protein factor. In vitro complex formation was observed in crude extracts of yeast strains carrying either a single genomic copy of the PUT3 gene or the cloned PUT3 gene on a 2 microns plasmid, and the binding was dosage dependent. DNA-binding activity was not observed in extracts of strains carrying either a put3 mutation that caused a noninducible (Put-) phenotype or a deletion of the gene. Wild-type levels of complex formation were observed in an extract of a strain carrying an allele of PUT3 that resulted in a constitutive (Put+) phenotype. Extracts from a strain carrying a PUT3-lacZ gene fusion formed two complexes of slower mobility than the wild-type complex. We conclude that the PUT3 product is either a DNA-binding protein or part of a DNA-binding complex that recognizes the UASs of both PUT1 and PUT2. Binding was observed in extracts of a strain grown in the presence or absence of proline, demonstrating the constitutive nature of the DNA-protein interaction.  相似文献   

9.
10.
The PRO1 gene of Saccharomyces cerevisiae encodes the 428-amino-acid protein gamma-glutamyl kinase (ATP:L-glutamate 5-phosphotransferase, EC 2.7.2.11), which catalyzes the first step in proline biosynthesis. Amino acid sequence comparison revealed significant homology between the yeast and Escherichia coli gamma-glutamyl kinases throughout their lengths. Four close matches to the consensus sequence for GCN4 protein binding and one close match to the RAP1 protein-binding site were found in the PRO1 upstream region. The response of the PRO1 gene to changes in the growth medium was analyzed by measurement of steady-state mRNA levels and of beta-galactosidase activity encoded by a PRO1-lacZ gene fusion. PRO1 expression was not repressed by exogenous proline and was not induced by the presence of glutamate in the growth medium. Although expression of the PRO1 gene did not change in response to histidine starvation, both steady-state PRO1 mRNA levels and beta-galactosidase activities were elevated in a gcd1 strain and reduced in a gcn4 strain. In addition, a pro1 bradytrophic strain became completely auxotrophic for proline in a gcn4 strain background. These results indicate that PRO1 is regulated by the general amino acid control system.  相似文献   

11.
The COX6 gene encodes subunit VI of cytochrome c oxidase. Previously, this gene and its mRNAs were characterized, and its expression has been shown to be subject to glucose repression/derepression. In this study we have examined the effects of heme and the HAP1 (CYP1) and HAP2 genes on the expression of COX6. By quantitating COX6 RNA levels and assaying beta-galactosidase activity in yeast cells carrying COX6-lacZ fusion genes, we have found that COX6 is regulated positively by heme and HAP2, but is unaffected by HAP1. Through 5' deletion analysis we have also found that the effects of heme and HAP2 on COX6 are mediated by sequences between 135 and 590 base pairs upstream of its initiation codon. These findings identify COX6 as the fourth respiratory protein gene that is known to be regulated positively by heme and HAP2. The other three, CYC1, COX4, and COX5a, encode iso-1-cytochrome c, cytochrome c oxidase subunit IV, and an isolog, Va, of cytochrome c oxidase subunit V, respectively. Thus, it appears that the biogenesis of two interacting proteins, cytochrome c and cytochrome c oxidase, in the mitochondrial respiratory chain, are under the control of common factors.  相似文献   

12.
In Saccharomyces cerevisiae, the COX5a and COX5b genes constitute a small gene family that encodes two forms of cytochrome c oxidase subunit V, Va and Vb, either of which can provide a function essential for cytochrome c oxidase activity and respiration. In aerobically grown wild-type yeast cells, Va is the predominant form of subunit V. The COX5b gene alone does not produce enough Vb to support a respiration rate sufficient to allow growth on nonfermentable carbon sources. By selecting for mutations that increase the respiratory capacity of a strain deleted for COX5a, we have identified a gene that is involved in negative regulation of COX5b expression under aerobic growth conditions. Each of four independently isolated reo1 mutations are shown to be recessive, unlinked to COX5b, but dependent on COX5b for phenotypic expression. The mutations define a single complementation and linkage group: designated as REO1 for regulator of expression of oxidase. reo1 mutations increase expression of COX5b in aerobically grown cells, but not in anaerobically grown cells, where expression is already elevated. These mutations have no effect on COX5a, the other member of this small gene family which is positively regulated by heme and oxygen. The REO1 gene does play a role in repression of ANB1, a gene that is normally repressed under aerobic but not anaerobic conditions. Neither rox1 or rox3 mutations, which have previously been shown to increase ANB1 expression, are in the same complementation group as reo1 mutations.  相似文献   

13.
A denitrifying mutant of Bacillus stearothermophilus NCA 2184, strain 2184-D, was used to explore the development of nitrate respiration in relation to oxygen respiration. Aerobically grown wild-type cultures could acquire the ability to use nitrate as a result of selection of nitrate-respiring mutants by the presence of nitrate and a reduced oxygen tension. Fluctuation analysis has revealed that the frequency of occurrence of the nitrate-respiring mutant is about 7.5 x 10(-8) per bacterium per generation. Nitrate reductase and nitrite reductase appeared to be induced sequentially in strain 2184-D by the addition of nitrate. The formation of both of these enzymes was repressed by oxygen so that cells grown aerobically with nitrate possessed a low basal level of nitrate reducatase and exhibited no denitrification. The rate of synthesis of nitrate reductase increased quickly after addition of nitrate and removal of oxygen. It then declined to a lower steady-state level. Cells grown anaerobically with nitrate retained approximately 30 to 40% of the respiratory activity of aerobically grown cells. Aeration of anaerobically grown cells in the presence of amino acids increased the respiratory activity to normal aerobic levels. This aeration promoted rapid degradation of the existing nitrate reductase with or without the added amino acids.  相似文献   

14.
The diarrheal potential of a Bacillus cereus strain is essentially dictated by the amount of secreted nonhemolytic enterotoxin (Nhe). Expression of genes encoding Nhe is regulated by several factors, including the metabolic state of the cells. To identify metabolic sensors that could promote communication between central metabolism and nhe expression, we compared four strains of the B. cereus group in terms of metabolic and nhe expression capacities. We performed growth performance measurements, metabolite analysis, and mRNA measurements of strains F4430/73, F4810/72, F837/76, and PA cultured under anoxic and fully oxic conditions. The results showed that expression levels of nhe and ldhA, which encodes lactate dehydrogenase A (LdhA), were correlated in both aerobically and anaerobically grown cells. We examined the role of LdhA in the F4430/73 strain by constructing an ldhA mutant. The ldhA mutation was more deleterious to anaerobically grown cells than to aerobically grown cells, causing growth limitation and strong deregulation of key fermentative genes. More importantly, the ldhA mutation downregulated enterotoxin gene expression under both anaerobiosis and aerobiosis, with a more pronounced effect under anaerobiosis. Therefore, LdhA was found to exert a major control on both fermentative growth and enterotoxin expression, and it is concluded that there is a direct link between fermentative metabolism and virulence in B. cereus. The data presented also provide evidence that LdhA-dependent regulation of enterotoxin gene expression is oxygen independent. This study is the first report to describe a role of a fermentative enzyme in virulence in B. cereus.  相似文献   

15.
16.
17.
光合菌SDH2 hupT基因的突变与吸氢酶表达   总被引:1,自引:0,他引:1  
利用三亲本杂交将自杀质粒pSE8引入光合细菌Rodobacter sp.SDH20菌株,经过质粒上插入了kan^R基因的hupT基因片段与受体基因组同源双交换,构建成hupT插入突变株SDHT1和SDHT2。  相似文献   

18.
Superoxide dismutase and catalase levels in halophilic vibrios.   总被引:1,自引:0,他引:1       下载免费PDF全文
Superoxide dismutase (SOD) and catalase (CAT) levels were determined for several aerobically grown halophilic vibrios and compared with those found in aerobically grown Escherichia coli K-12. The SOD levels ranged from 25 to 103.6 U/mg of protein for the vibrios compared with 44.6 U/mg of protein for E. coli. The CAT levels ranged from 2.1 to 32.1 U/mg of protein. Electrophoretic analysis of cell extracts revealed that the halophilic vibrios tested possessed only one detectable SOD enzyme, except one strain which possessed two distinct enzymes, as compared with the three SOD enzymes in aerobically grown E. coli K-12. A comparison of anaerobically and aerobically grown vibrios revealed a three- to fourfold increase in SOD activity in the aerobic cells, suggesting that oxygen acts as an inducer for SOD in the vibrios as has been reported for E. coli. In one strain, Vibrio parahaemolyticus 27519, both SOD enzymes were observed in low levels in anaerobic and at higher levels in aerobically grown cells as compared with only one SOD enzyme in anaerobically grown E. coli. This suggests that differences in SOD regulation occur between the two genera. Our results indicate that halophilic vibrios possess SOD, which could enhance viruulence by allowing the organisms to survive in oxygenated environments.  相似文献   

19.
By deletion analysis of the fusion genes FBP1-lacZ and PCK1-lacZ we have identified a number of strong regulatory regions in the genes FBP1 and PCK1 which encode fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase. Lack of expression of beta-galactosidase in fusions lacking sequences from the coding regions suggests the existence of downstream activating elements. Both promoters have several UAS and URS regions as well as sites implicated in catabolite repression. We have found in both genes consensus sequences for the binding of the same regulatory proteins, such as yAP1, MIG1 or the complex HAP2/HAP3/HAP4. Neither deletion nor overexpression of the MIG1 gene affected the regulated expression of the FBP1 or PCK1 genes.  相似文献   

20.
S Iuchi  D Furlong    E C Lin 《Journal of bacteriology》1989,171(5):2889-2893
In Escherichia coli, mutations in arcA (dye) or arcB anaerobically derepress the synthesis of a multitude of enzymes of aerobic function, and mutations in arcA or cpxA impair F-pilus formation. It is thought that arcA encodes a promoter-recognizing protein, whereas arcB and cpxA encode sensor proteins which interact with the arcA product. In this study we found that anaerobic growth of a wild-type F' strain decreased the synthesis of both the enzymes and the pilus. Although the two arcA mutants examined were both anaerobically derepressed in the enzymes and impaired in aerobic pilus formation as expected, one mutant hyperproduced the pilus anaerobically. The two arcB mutants examined showed normal pilus formation when grown aerobically. When grown anaerobically they developed more pili than the wild-type strain did when grown aerobically. When a cpxA mutant was examined for synthesis of two aerobic enzymes, normal regulation was found. The available data suggest the following. The arcA product anaerobically represses certain genes of aerobic function and activates certain genes related to F function. It appears that the arcB product senses the redox or energy state; absence of the gene function shifts the arcA product to the nonrepressive form for enzyme synthesis for aerobic pathways. The cpxA product, on the other hand, senses the sexual state; absence of the gene function shifts the arcA product to the inactive form for F-pilus synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号