首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Plasmid DNA pRc/CMV HBS encoding the S (small) region of hepatitis B surface antigen (HBsAg) was incorporated by the dehydration–rehydration method into Lipodine? liposomes composed of 16 µmoles phosphatidylcholine (PC) or distearoyl phosphatidylcholine (DSPC), 8 µmoles of (dioleoyl phosphatidylethanolamine (DOPE) or cholesterol and 4 µmoles of the cationic lipid 1,2-dioleoyl-3-(trimethylammonium propane (DOTAP) (molar ratios 1 : 0.5 : 0.25). Incorporation efficiency was high (89–93% of the amount of DNA used) in all four formulations tested and incorporated DNA was shown to be resistant to displacement in the presence of the competing anionic sodium dodecyl sulphate molecules. This is consistent with the notion that most of the DNA is incorporated within the multilamellar vesicles structure rather than being vesicle surface-complexed. Stability studies performed in simulated intestinal media also demonstrated that dehydration–rehydration vesicles (DRV) incorporating DNA (DRV(DNA)) were able to retain significantly more of their DNA content compared to DNA complexed with preformed small unilamellar vesicles (SUV–DNA) of the same composition. Moreover, after 4h incubation in the media, DNA loss for DSPC DRV(DNA) was only minimal, suggesting this to be the most stable formulation. Oral (intragastric) liposome-mediated DNA immunisation studies employing a variety of DRV(DNA) formulations as well as naked DNA revealed that secreted IgA responses against the encoded HBsAg were (as early as three weeks after the first dose) substantially higher after dosing with 100 µg liposome-entrapped DNA compared to naked DNA. Throughout the fourteen week investigation, IgA responses in mice were consistently higher with the DSPC DRV(DNA) liposomes compared to naked DNA and correlated well with their improved DNA retention when exposed to model intestinal fluids. To investigate gene expression after oral (intragastric) administration, mice were given 100 µg of naked or DSPC DRV liposome-entrapped plasmid DNA expressing the enhanced green fluorescent protein (pCMV.EGFP). Expression of the gene, in terms of fluorescence intensity in the draining mesenteric lymph nodes, was much greater in mice dosed with liposomal DNA than in animals dosed with the naked DNA. These results suggest that DSPC DRV liposomes containing DNA (Lipodine?) may be a useful system for the oral delivery of DNA vaccines.  相似文献   

2.
We have previously shown that liposome-mediated plasmid DNA immunisation may be a preferred alternative to the use of naked DNA. Lipodine DNA formulations consist of liposomes containing entrapped DNA plasmid by the dehydration-rehydration (DRV) method. Such liposome formulations are distinct from liposomes with externally complexed DNA in that the majority of the DNA is "internal" to the liposome structure and hence protected from DNAase degradation. Previous studies on the immune response induced by DNA vaccines entrapped in Lipodine have focused on the humoural response. In the present study, we have expanded the analysis profile in order to include the cytotoxic T lymphocyte (CTL) component of the immune response. We have analysed the immune response induced by DNA entrapped in Lipodine compared to that induced by DNA alone when delivered subcutaneously, a route of administration not normally inducing significant plasmid DNA mediated immune activation. Our results indicate that delivery of a small dose of plasmid DNA in Lipodine results in an improved antibody response to the plasmid encoded antigen and a strong antigen specific CTL response compared to that induced by DNA delivered alone.  相似文献   

3.
We investigated the influence of dehydration-rehydration vesicles (DRV) phospholipid composition and the addition of other components on human recombinant epidermal growth factor (hrEGF) encapsulation efficiency and its release from liposomes. Encapsulation of EGF into DRV composed of phosphatidylcholine with different unsaturation levels was around 20-35%. The best result was obtained with dipalmitoyl phosphatidylcholine: cholesterol (DPPC:Ch) liposomes (35%) corresponding to the lowest hrEGF release during one month of storage. Even with this phospholipid composition, modification of the DRV procedure by including an extrusion step did not improve hrEGF encapsulation efficiency, rendering less stable particles. The inclusion of recombinant P64k from Neisseria meningitidis (rP64k), as such or conjugated to hrEGF, decreased the encapsulation efficiency of the latter protein into DRV or freeze and thaw multilamellar vesicles (FATMLV). The hrEGF release from liposomes could be related to the interaction between this polypeptide and the bilayer, as evidenced by increased carboxyfluorescein release from hrEGF-DRV; less susceptibility to fluorescence quenching by acrylamide in the presence of liposomes; and a measurable decrease of phospholipid phase transition Delta enthalpy (DeltaH). DRV comprising saturated phospholipids (DPPC:Ch or distearoyl phosphatidylcholine [DSPC]:Ch) and containing the conjugate EGF-P64k induced a more efficient immune response against hrEGF than unsaturated phospholipid and alum in terms of total IgG, IgG(2a), and IgG(2b) subclasses and the ability of antibody to inhibit the interaction of the EGF receptor with hrEGF.  相似文献   

4.
ABSTRACT

We have previously shown that liposome-mediated plasmid DNA immunisation may be a preferred alternative to the use of naked DNA. Lipodine? DNA formulations consist of liposomes containing entrapped DNA plasmid by the dehydration–rehydration (DRV) method. Such liposome formulations are distinct from liposomes with externally complexed DNA in that the majority of the DNA is “internal” to the liposome structure and hence protected from DNAase degradation. Previous studies on the immune response induced by DNA vaccines entrapped in Lipodine? have focused on the humoural response. In the present study, we have expanded the analysis profile in order to include the cytotoxic T lymphocyte (CTL) component of the immune response. We have analysed the immune response induced by DNA entrapped in Lipodine? compared to that induced by DNA alone when delivered subcutaneously, a route of administration not normally inducing significant plasmid DNA mediated immune activation. Our results indicate that delivery of a small dose of plasmid DNA in Lipodine? results in an improved antibody response to the plasmid encoded antigen and a strong antigen specific CTL response compared to that induced by DNA delivered alone.  相似文献   

5.
Arsenic trioxide liposomes: encapsulation efficiency and in vitro stability   总被引:2,自引:0,他引:2  
The use of arsenic-containing compounds in cancer therapy is currently being re-considered, after the recent approval of arsenic trioxide (Trisenox) for the treatment of relapsed promyelocytic leukemia (PML). In an attempt to prepare a carrier system to minimize the toxicity of this drug, the aim of this study is to prepare and characterize liposomes encapsulating arsenic trioxide (ATO). For this, we prepared different types of liposomes entrapping ATO: large multilamellar (MLV), sonicated (SUV) and dried reconstituted vesicles (DRV). The techniques used were: thin film hydration, sonication and the DRV method, respectively. Two lipid compositions were studied for each liposome type, EggPC/Chol (1:1) and DSPC/Chol (1:1). After liposome preparation, drug encapsulation was evaluated by measuring arsenic in liposomes. For this, energy-dispersive X-ray fluorescence spectroscopy or atomic absorption was used. In addition, the retention of the drug in the liposomes was evaluated after incubating the liposomes in buffer at 37 degrees C. The experimental results reveal that encapsulation of ATO in liposomes ranges between 0.003 and 0.506 mol/ mol of lipid, and is highest in the DRV vesicles and lowest in the small unilamellar vesicles, as anticipated. Considering the in vitro stability of ATO-encapsulating liposomes: 1) For the PC/Chol liposomes (DRV and MLV), after 24 hours of incubation, more than 70% (or 90% in some cases) of the initially encapsulated amount of ATO was released. 2) The liposomes composed of DSPC/Chol could retain substantially higher amounts of ATO, especially the DRV liposomes (54% retained after 24 h). 3) In the case of PC/Chol, temperature of incubation has no effect on the ATO release after 24 hours, but affects the rate of ATO release in the MLV liposomes, while for the DSPC/Chol liposomes there is a slight increase (statistically insignificant) of ATO release at higher temperature.  相似文献   

6.
The use of arsenic‐containing compounds in cancer therapy is currently being re‐considered, after the recent approval of arsenic trioxide (Trisenox®) for the treatment of relapsed promyelocytic leukemia (PML). In an attempt to prepare a carrier system to minimize the toxicity of this drug, the aim of this study is to prepare and characterize liposomes encapsulating arsenic trioxide (ATO). For this, we prepared different types of liposomes entrapping ATO: large multilamellar (MLV), sonicated (SUV) and dried reconstituted vesicles (DRV). The techniques used were: thin film hydration, sonication and the DRV method, respectively. Two lipid compositions were studied for each liposome type, EggPC/Chol (1:1) and DSPC/Chol (1:1). After liposome preparation, drug encapsulation was evaluated by measuring arsenic in liposomes. For this, energy‐dispersive X‐ray fluorescence spectroscopy or atomic absorption was used. In addition, the retention of the drug in the liposomes was evaluated after incubating the liposomes in buffer at 37°C. The experimental results reveal that encapsulation of ATO in liposomes ranges between 0.003 and 0.506 mol/ mol of lipid, and is highest in the DRV vesicles and lowest in the small unilamellar vesicles, as anticipated. Considering the in vitro stability of ATO‐encapsulating liposomes: 1) For the PC/Chol liposomes (DRV and MLV), after 24 hours of incubation, more than 70% (or 90% in some cases) of the initially encapsulated amount of ATO was released. 2) The liposomes composed of DSPC/Chol could retain substantially higher amounts of ATO, especially the DRV liposomes (54% retained after 24 h). 3) In the case of PC/Chol, temperature of incubation has no effect on the ATO release after 24 hours, but affects the rate of ATO release in the MLV liposomes, while for the DSPC/Chol liposomes there is a slight increase (statistically insignificant) of ATO release at higher temperature.  相似文献   

7.
Mouse monoclonal IgG1 specific for hepatitis B surface antigen and ovine polyclonal antibody raised against digoxin were covalently coupled by a diazotisation method to small unilamellar vesicles (SUV) composed of equimolar phospholipid and cholesterol supplemented with 6 mol% aminophenylstearylamine (APSA). Up to 33% of the antibody used was associated with vesicles, depending on the phospholipid and the antibody type used. Antibody-coated SUV were mixed with carboxyfluorescein (CF) or beta-galactosidase to generate multilamellar dehydration-rehydration vesicles (DRV) containing CF or active enzyme. In contrast, coupling of antibodies directly to beta-galactosidase-containing DRV resulted in total inactivation of the enzyme. About 85% of the SUV-bound antibody was recovered in DRV and of this, 78-82% was exposed on the liposomal surface, possibly because of reorientation of the APSA-antibody complex during DRV formation. Antibody-coated DRV remained stable in the presence of plasma at 37 degrees C and also under storage at 4 degrees C. Further, antibody coupled to such liposomes was capable of efficient interaction with the respective antigen. The present method allows the attachment of antibodies to the liposomal surface independently of entrapment of solutes, the activity of which is thus preserved, and could be adapted to alternative coupling procedures or ligands.  相似文献   

8.
Plasmid DNA pRc/CMV HBS (5.6 kb) (100 microg) encoding the S (small) region of hepatitis B surface antigen was incorporated by the dehydration-rehydration method into liposomes composed of 16 micromol egg phosphatidylcholine (PC), 8 micromol dioleoylphosphatidylcholine (DOPE) and 1, 2-diodeoyl-3-(trimethylammonium)propane (DOTAP) (cationic liposomes) or phosphatidylglycerol (anionic liposomes) in a variety of molar ratios. The method, entailing mixing of small unilamellar vesicles (SUV) with the DNA, followed by dehydration and rehydration, yielded incorporation values of 95-97 and 48-54% of the DNA used, respectively. Mixing of preformed cationic liposomes with 100 microg plasmid DNA also led to high complexation values of 73-97%. As expected, the association of DNA with preformed anionic liposomes was low (9%). Further work with cationic PC/DOPE/DOTAP liposomes attempted to establish differences in the nature of DNA association with the vesicles after complexation and the constructs generated by the process of dehydration/rehydration. Several lines of evidence obtained from studies on vesicle size and zeta-potential, fluorescent microscopy and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, interaction of DNA with preformed cationic SUV as above, or with cationic SUV made of DOPE and DOTAP (1:1 molar ratio; ESCORT Transfection Reagent), leads to the formation of large complexes with externally bound DNA. For instance, such DNA is accessible to and can be dissociated by competing anionic SDS molecules. However, dehydration of the DNA-SUV complexes and subsequent rehydration, generates submicron size liposomes incorporating most of the DNA in a fashion that prevents DNA displacement through anion competition. It is suggested that, in this case, DNA is entrapped within the aqueous compartments, in between bilayers, presumably bound to the cationic charges.  相似文献   

9.
Efficacy of vaccination against cutaneous leishmaniasis in highly susceptible BALB/c mice was assessed comparatively by using radiation-attenuated promastigotes and colloidal Ag mixtures generated from a mixed Leishmania major (LV39) isolate (SLV39) and from a virulent cloned line (SVJ2) derived from the Jericho 2 L. major isolate. Dehydration-rehydration vesicle (DRV) liposomes were used as adjuvants. In optimization experiments phospholipid composition of DRV was varied, and the distearoyl derivative (DSPC) (liquid-crystalline phase transition temperature (Tc) 54 degrees C) of egg lecithin L-alpha-phosphatidylcholine was found to be superior to the dipalmitoyl derivative (DPPC, Tc 41.5 degrees C) and underivatized L-alpha-phosphatidylcholine (Tc -10 degrees C). The criteria studied were in vivo priming for a secondary in vitro proliferative response and the prepatency of lesion onset after L. major challenge of mice immunized once i.v. A single s.c. immunization with SLV39 either free or entrapped within DSPC liposomes primed spleen cells to produce significant levels of IL-3 when stimulated with SLV39 in vitro. In contrast, the i.v. route of immunization with the same Ag preparations led to little or no IL-3 production by the spleen cells. Despite development of significant T cell activation, both SLV39 and SVJ2 administered s.c., either free or entrapped within liposomes, were not protective. However, i.v. immunization four times with SVJ2 entrapped within DSPC liposomes induced a level of resistance comparable with that of 2 x 10(7) gamma-irradiated promastigotes in the stringent BALB/c L. major model. Although significant, protection conferred after i.v. immunization with SLV39/DSPC liposomes was less effective. These data therefore show that DSPC/DRV liposomes, although a good adjuvant for inducing protective immunity to cutaneous leishmaniasis, are not able to overcome the requirement for an i.v. route of immunization with the leishmanial Ag preparation. Additionally, they demonstrate a correlation between IL-3 secretion and non-protection. They also suggest that SVJ2 represents a better source of protective Ag than SLV39.  相似文献   

10.
The effect of cholesterol in the liposome bilayer on the stability of incorporated retinol was studied. Retinol was incorporated into liposomes containing soybean phosphatidylcholine (PC) and cholesterol (CH) at various ratios, and the liposomes were prepared as multilamellar vesicles by the dehydration-rehydration method. Retinol readily incorporated into liposomes at a ratio of 0.01:1 (w/w) retinol:lipid, with over 94.52% being incorporated in all conditions studied. The incorporation efficiency of retinol increased slightly with increasing CH content in the liposome and with increasing pH of the hydration buffer. Average particle size increased as the CH content increased, and mean particle sizes at pH 5, 7, and 9 were 30.27, 89.53, and 41.42 microm, respectively. The time course of retinol degradation in aqueous solution in liposomes with various ratios of PC to CH was determined under a variety of pH conditions (pH 5, 7, and 9), and temperatures (4, 25, 37, and 50 degrees C). The stability of incorporated retinol was enhanced by increasing the CH content. At pH 7.0 and 4 degrees C, for example, 90.17% of the retinol in liposomes containing 50:50 (PC:CH) remained after 10 days of storage, whereas 51.46% remained at 100:0 (PC:CH). These results indicate that CH in liposomes greatly increases the incorporation efficiency of retinol and the stability of incorporated retinol.  相似文献   

11.
Introduction of liposome-encapsulated SV40 DNA into cells   总被引:16,自引:0,他引:16  
DNA, isolated from Simian virus 40 (SV40), has been encapsulated in large (0.4-micrometer diameter) unilamellar phospholipid vesicles. The procedure used for liposome preparation encapsulated the SV40 DNA at high efficiency (30 to 50% entrapment) and did not alter the physical or biological properties of the DNA molecules. The biological activity of the liposome-entrapped viral DNA was determined by plaque assays on a permissive monkey cell line. The infectivity of liposome-entrapped SV40 DNA was enhanced at least 100-fold over that of free naked DNA. Importantly, the infectivity of vesicle-entrapped DNA was resistant to DNase digestion, dependent on the amount of DNA encapsulated per vesicle and on the vesicle lipid composition. Liposomes composed of phosphatidylserine were the most efficient for delivery of DNA to cells (1.8 x 10(3) plaque-forming units/micrograms of DNA). Following the incubation of DNA-containing liposomes with cells, their infectivity could be enhanced an additional 10- to 200-fold by exposing the cells to high concentrations of polyethylene glycol or glycerol. Under these conditions the infectivity of liposome-encapsulated SV40 DNA (3 x 10(5) plaque-forming units/microgram) was comparable with values reported using the calcium phosphate method. In addition to providing a sensitive assay for monitoring and optimizing the delivery of vesicle contents to cells, the liposome-mediated delivery of nucleic acids may have potential for increasing the efficiency of DNA delivery to cells and for extending the number of cell types which can be transformed or transfected.  相似文献   

12.
Small unilamellar liposomes containing carboxyfluorescein (CF) and composed of various unsaturated and saturated phospholipids with or without cholesterol were incubated in the presence of mouse serum at 37°C. Liposomes composed of egg L-α-phosphatidylcholine (PC), L-α-dioleoylphosphatidylcholine (DOPC) or sphingomyelin (SM) became rapidly permeable to entrapped CF but incorporation of cholesterol into such liposomes reduced CF leakage. Under similar conditions, CF leakage from cholesterol-free liposomes composed of saturated phospholipids of increasing fatty acid chain length was dependant on the liquid-crystalline phase transition temperature (Tc) of the phospholipid component. Thus, L-α-dilaureoylphos-phatidylcholine (DLPC), L-α-dimyristoyl phosphatidylcholine (DMPC) and L-α-dipalmitoylphosphatidylcholine (DPPC) with Tc's below or near the temperature of the incubation (37°C) released CF rapidly whereas L-α-diheptedecanoyl phosphatidylcholine (DHPC), L-α-distearoylphosphatidylcholine (DSPC) and hydrogenated egg PC (HPC) liposomes with Tc's above 37°C retained the dye quantitatively. After incorporation of cholesterol into liposomes composed of saturated phospholipids, CF release was reduced for DLPC and DMPC and increased for DPPC, DSPC, DHPC and HPC vesicles. Liposomes with or without cholesterol exhibiting greatest stability (in terms of CF retention) in the presence of serum were injected intravenously into mice and rates of clearance of quenched CF from the circulation measured. Observed clearance rates were linear and, when liposomes contained tritiated phospholipid, identical to those of the radiolabel suggesting retention of liposomal integrity in the intravascular space. However, half-lifes of liposomes ranging from 0.1 to 16 h did not correlate with the physical characteristics of their phospholipid component. After intraperitoneal injection, there was quantitative entry of quenched CF (stable liposomes) into the blood from which it was eliminated at rates corresponding to those observed after intravenous injection. These results suggest that solute retention by liposomes and their half-life in the circulation can be controlled by the appropriate manipulation of liposomal membrane fluidity and composition.  相似文献   

13.
The effect of poly(ethylene glycol) (PEG) on the circulation time of liposomes in mice was examined by employing amphipathic PEGs (phosphatidylethanolamine (PE) derivatives of PEG) with average molecular weights of 1000, 2000, 5000 and 12,000. The activity of dioleoyl phosphatidylethanolamine-PEG (DOPE-PEG) in prolonging the circulation time of egg phosphatidylcholine/cholesterol large unilamellar liposomes (ePC/CH LUVs) (200 nm) was proportional to the molecular weight of PEG, i.e., 12000 = 5000 greater than 2000 greater than 1000. On the other hand, inclusion of distearoylphosphatidylethanolamine-PEG (DSPE-PEG) or dipalmitoyl-phosphatidylethanolamine-PEG (DPPE-PEG) of low molecular weight such as 1000 and 2000 in distearoylphosphatidylcholine (DSPC)/CH LUVs or dipalmitoyl phosphatidylcholine (DPPC)/CH LUVs effectively increased their blood circulation time. At least 3 mol% of amphipathic PEG in liposomes was required for activity. Addition of CH, which has a bilayer-tightening effect, to DSPC/CH/DSPE-PEG2000 LUVs further increased the blood residence time. A size of less than 300 nm was essential for prolonging the residence time of amphipathic PEG-containing liposomes in blood. DSPC/CH/DSPE-PEG2000 LUVs (1:1:0.13, m/m) containing 6 mol% of PEG and 200 nm in diameter remained in the circulation for over 24 h after injection and may be clinically useful for sustained release of an entrapped drug in the bloodstream and for drug accumulation in solid tumors.  相似文献   

14.
The relative stability of the lipid bilayer toward ions above the crystalline to liquid-crystalline phase transition temperature has been studied under isotonic conditions for small annealed vesicles of dilauroyl (DLPC), dimyristoyl (DMPC), diplamitoyl (DPPC), and distearoyl (DSPC) phosphatidylcholine by using lanthanide ions as a probe. The bilayer stability increased as the chain length of the lipid fatty acid increased, and a rapid translocation of ions across the bilayer started at about 60, 70, and 80° C for DMPC, DPPC, and DSPC vesicles, respectively. The bilayer of DLPC vesicles is apparently permeable for the tested ions even at room temperature. Two other important phenomena concomitant with the observed translocation of ions were found. Firstly, the ion leakage occurred in an “an-or-none” fashion, i.e. as soon as the vesicles start to become permeable toward ions, the concentration of ions in the intra-and extravesicular media are equalized within a short time. Secondly, the rate of the relative number of inward facing lipid molecules which become exposed to extravesicularly added paramagnetic lanthanide is a function of the inverse phosphatidylcholine concentration. This feature explicitly excludes the possibilities that the observed ion leakage occurs through a diffusion, pore formation, or through the rupture of vesicle walls induced by vesicle-vesicle collisions. We instead propose as the most probable mechanism that a dynamic equilibrium between the various states of the phosphatidylcholine molecules in water, such as monomers, micelles, vesicles, and multilamellar liposomes, is in fact responsible for the observed phenomena.  相似文献   

15.
Vaccine entrapment in liposomes.   总被引:2,自引:0,他引:2  
The use of liposomes as carriers of peptide, protein, and DNA vaccines requires simple, easy-to-scale-up technology capable of high-yield vaccine entrapment. Work from this laboratory has led to the development of techniques that can generate liposomes of various sizes, containing soluble antigens such as proteins and particulate antigens (e.g., killed or attenuated bacteria or viruses), as well as antigen-encoding DNA vaccines. Entrapment of vaccines is carried out by the dehydration-rehydration procedure which entails freeze-drying of a mixture of "empty" small unilamellar vesicles and free vaccines. On rehydration, the large multilamellar vesicles formed incorporate up to 90% or more of the vaccine used. When such liposomes are microfluidized in the presence of nonentrapped material, their size is reduced to about 100 nm in diameter, with much of the originally entrapped vaccine still associated with the vesicles. A similar technique applied for the entrapment of particulate antigens (e.g., Bacillus subtilis spores) consists of freeze-drying giant vesicles (4-5 microm in diameter) in the presence of spores. On rehydration and sucrose gradient fractionation of the suspension, up to 30% or more of the spores used are associated with generated giant liposomes of similar mean size.  相似文献   

16.
Abstract

Rationale and Objectives:

The use of contrast-carrying liposomes in diagnostic applications (1) or of haemoglobin liposomes in blood replacement therapy (2) requires infusion of large lipid doses. Saturated lipids like HSPC are often used in these formulations to render the liposomes more stable (3). Previous studies have indicated that intravenous injection of such liposome preparations can result in significant haemodynamic changes in rats (14). The purpose of this study was to systematically evaluate cardio- and haemodynamic effects of liposomes prepared from saturated and unsaturated phosphatidylcholine alone or in combination with other lipid components.

Methods;

Liposomes made from SPC, HSPC, DSPC, DSPC/CH, DSPC/DSPG, DSPC/CH/DSPG were infused in anaesthetized rats (total lipid dose: 300 mg lipid/kg BW) and cardio-heamodynamic parameters were measured.

Results:

DSPC-liposomes significantly reduced blood pressure (BP) and total peripheral resistance (TPR) by -53.7 % and -45.7 % of prevalue, respectively. Similar results were obtained for HSPC-liposomes. Marked ECG-changes were recorded for both formulations. SPC-liposomes caused a transient and moderate reduction of BP and TPR (-17.0 % and -22.3 %, respectively). Short-lasting ECG changes were also observed. The addition of cholesterol or DSPG to DSPC liposomes reduced cardiac and haemodynamic side effects in rats.

Conclusion;

The lipid composition of liposomes is of major importance for the incidence of cardiovascular side effects in rats. Liposomes composed of pure saturated phosphatidylcholine cause significant changes which can be diminished by the addition of other lipid components like cholesterol.  相似文献   

17.
The interaction of sheep erythrocyte membranes with phosphatidylcholine vesicles (liposomes) or human plasma lipoproteins is described. Isolated sheep red cell membranes were incubated with liposomes containing [14C]phosphatidylcholine or [3H]phosphatidylcholine in the presence of EDTA. A time-dependent uptake of phosphatidylcholine into the membranes could be observed. The content of this phospholipid was increased from 2 to 5%. The rate of transfer was dependent on temperature, the amount of phosphatidylcholine present in the incubation mixture and on the fatty acid composition of the liposomal phosphatidylcholine. A possible adsorption of lipid vesicles to the membranes could be monitored by adding cholesteryl [14C]oleate to the liposomal preparation. As cholesterylesters are not transferred between membranes [1], it was possible to differentiate between transfer of phosphatidylcholine molecules from the liposomes into the membranes and adsorption of liposomes to the membranes. The phosphatidylcholine incorporated in the membranes was isolated, and its fatty acids were analysed by gas chromatography. It could be shown that there was a preferential transfer of phosphatidylcholine molecules containing two unsaturated fatty acids.  相似文献   

18.
Peptide VP1 (11-25) of the capsid of hepatitis A virus was synthesized by the Fmoc-polyamide solid phase method, and administered to mice in different forms: (1) free, (2) encapsulated in multilamellar liposomes, (3) coupled to keyhole limpet hemocyanin (KHL), and (4) incorporated into a tetrameric branched lysine core. The highest anti-VP1 peptide responses were generated by synthetic peptides entrapped into liposomes and coupled to KLH. No anti-HAV response was generated with the free peptide, while all the other forms induced both anti-HAV and HAV-neutralizing antibodies. Maximum neutralization indices were observed in ascites from mice treated with liposome-entrapped and KLH peptides.  相似文献   

19.
Long-living liposomes as potential drug carriers   总被引:2,自引:0,他引:2  
Neutral, unilamellar liposomes (vesicles) composed of a dialkyl analog of phosphatidylcholine and cholesterol, and containing 14C-maltose as entrapped marker, were administered intravenously to mice. After one and two days, radioactivity in blood and liver remained 3–4 times higher than after administration of liposomes of egg (diester) phosphatidylcholine and cholesterol. It appears that the vesicles were taken into liver cells by endocytosis, and that phospholipases are involved in the capture as well as in the breakdown of conventional liposomes. Liposomes that are semi-resistant to catabolic enzymes may become useful in the manipulation of drug delivery.  相似文献   

20.
Bovine brain gangliosides incorporated into phospholipid liposomes provide receptors for wheat germ agglutinin. Purified monosialogangliosides were mixed with egg phosphatidylcholine, and unilamellar liposomes were generated. Addition of wheat germ agglutinin induced the liposomes to fuse, and gel filtration analysis revealed that the lectin was incorporated into the fused liposomes. The fusion process was studied by following the changes in the 190° light scattering. Increasing the proportion of the monosialoganglioside in the liposomes was found to increase both the extent of the lectin-induced liposome fusion and the rate of the reaction; below a threshold of approx. 5 mol %, the process was extremely slow. The increase in light scattering could be prevented by the addition of the hapten inhibitor, N-acetyl-d-glucosamine (1 mM). Addition of the inhibitor, subsequent to the lectin, caused a partial decrease in light scattering due to the dissociation of unfused vesicle aggregates. Electron microscopic examination revealed that the ganglioside-containing liposomes were vesicles, 244±25 Å (S.D.) in diameter. Upon addition of wheat germ agglutinin, the vesicles appeared to fuse to form larger vesicles, corresponding to dimers and trimers of the initial vesicles. Inhibition studies with a variety of monosaccharides indicated that the sialic acid moieties present in the gangliosides acted as the lectin-receptor sites. This was confirmed by the observation that wheat germ agglutinin did not interact with phosphatidylcholine vesicles containing desialyated ganglioside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号