首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Traditionally, the prime pathway for the topical delivery of active agents across the skin was thought to be through intercellular routes and transcellular routes of the stratum corneum. However, alternative means such as via appenageal transport, i.e., follicular transport, is gaining more acceptances in the scientific community. Targeting specific sites of the hair follicle may represent a feasible therapeutic approach to skin diseases such as hair loss. It is therefore an object of this research to develop novel liposomal formulations for enabling the topical delivery of difficult-to-absorb agents for localized action, specifically to the hair follicles and sebaceous glands. We examined small and large molecules. The small molecule chosen was minoxidil, a known hair growth stimulator. The large molecular weight molecule was plasmid DNA encoded with interleukin-1 receptor antagonist protein (IL-1ra).  相似文献   

2.
Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electroporation, sonophoresis, thermal ablation, laser ablation, radiofrequency ablation and noninvasive jet injectors aid in the delivery of proteins by overcoming the skin barrier in different ways. In this review, these enhancement techniques that can enable the transdermal delivery of proteins are discussed, including a discussion of mechanisms, sterility requirements, and commercial development of products. Combination of enhancement techniques may result in a synergistic effect allowing increased protein delivery and these are also discussed.  相似文献   

3.
The topical delivery of transgenes to hair follicles has potential for treating disorders of the skin and hair. Here we show that the topical administration of liposome-DNA mixtures (lipoplex) to mouse skin and to human skin xenografts resulted in efficient in vivo transfection of hair follicle cells. Transfection depended on liposome composition, and occurred only at the onset of a new growing stage of the hair cycle. Manipulating the hair follicle cycle with depilation and retinoic acid treatment resulted in nearly 50% transfection efficiency-defined as the proportion of transfected, newly growing follicles within the xenograft. Transgenes administered in this fashion are selectively expressed in hair progenitor cells and therefore have the potential to affect the characteristics of the follicle. These findings form a foundation for the future use of topical lipoplex applications to alter hair follicle phenotype and treat diseases of the hair and skin.  相似文献   

4.
Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.  相似文献   

5.
New vehicles for the non-invasive delivery of agents are introduced. These carriers can transport pharmacological agents, including large polypeptides, through the permeability barriers, such as the intact skin. This capability depends on the self-regulating carrier deformability which exceeds that of the related but not optimized lipid aggregates by several orders of magnitude. Conventional lipid suspensions, such as standard liposomes or mixed lipid micelles, do not mediate a systemic biological effect upon epicutaneous applications. In contrast to this, the properly devised adaptable carriers, when administered on the intact skin, transport therapeutic amounts of biogenic molecules into the body. This process can be nearly as efficient as an injection needle, as seen from the results of experiments in mice and humans with the insulin-carrying vesicles. The carrier-mediated transcutaneous insulin delivery is unlikely to involve shunts, lesions or other types of skin damage. Rather than this, insulin is inferred to be transported into the body between the intact skin cells with a bio-efficiency of at least 50% of the s.c. dose action.  相似文献   

6.
Kumar R  Katare OP 《AAPS PharmSciTech》2005,6(2):E298-E310
The purpose of this review is to give an insight into the considerable potential of lecithin organogels (LOs) in the applications meant for topical drug delivery. LOs are clear, thermodynamically stable, viscoelastic, and biocompatible jelly-like phases, chiefly composed of hydrated phospholipids and appropriate organic liquid. These systems are currently of interest to the pharmaceutical scientist because of their structural and functional benefits. Several therapeutic agents have been formulated as LOs for their facilitated transport through topical route (for dermal or transdermal effect), with some very encouraging results. The improved topical drug delivery has mainly been attributed to the biphasic drug solubility, the desired drug partitioning, and the modification of skin barrier function by the organogel components. Being thermodynamically stable, LOs are prepared by spontaneous emulsification and therefore posses prolonged shelf life. The utility of this novel matrix as a topical vehicle has further increased owing to its very low skin irritancy potential. Varied aspects of LOs viz formation, composition, phase behavior, and characterization have been elaborated, including a general discussion on the developmental background. Besides a comprehensive update on the topical applications of lecithin organogels, the review also includes a detailed account on the mechanistics of organogelling. Published: October 6, 2005  相似文献   

7.
Skin cancer is among one of the most common human malignancies wide-spread world-over with mortality statistics rising continuously at an alarming rate. The increasing frequency of these malignancies has marked the need for adopting effective treatment plan coupled with better and site-specific delivery options for the desired therapeutic agent's availability at the affected site. The concurrent delivery approaches to cancerous tissues are under constant challenge and, as a result, are evolving and gaining advancements in terms of delivery modes, therapeutic agents and site-specificity of the therapeutics delivery. The lipid-based liposomal drug delivery is an attractive and emerging option, and which is meticulously shaping up beyond a threshold level to a promising, and viable route for the effective delivery of therapeutic agents and other required injuctions to the skin cancer. An update on liposomal delivery of chemotherapeutic agents, natural-origin compounds, photosensitizer, and DNA repair enzymes as well as other desirable and typical delivery modes employed in drug delivery and in the treatment of skin cancers is discussed in details. Moreover, liposomal delivery of nucleic acid-based therapeutics, i.e., small interfering RNA (siRNA), mRNA therapy, and RGD-linked liposomes are among the other promising novel technology under constant development. The current clinical applicability, viable clinical plans, future prospects including transport feasibility of delivery vesicles and imaging techniques in conjunction with the therapeutic agents is also discussed. The ongoing innovations in liposomal drug delivery technology for skin cancers hold promise for further development of the methodology for better, more effective and site-specific delivery as part of the better treatment plan by ensuring faster drug transport, better and full payload delivery with enough and required concentration of the dose.  相似文献   

8.
Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy. [BMB Reports 2013; 46(1): 17-24]  相似文献   

9.
In view of the good skin tolerability, glycofurol was used as a vehicle-based gel, and its effect in the topical penetration of Naproxen (NAP) was investigated. The aims of this study were to develop a suitable gel with bioadhesive property, spreadability, and viscosity for topical anti-inflammatory effect. Three gelling and adhesive agents were examined: Carbopol 974P, Gantrez AN 119, and polyvinylpyrollidone K30. Skin permeation rates and lag times of NAP were evaluated using the Franz-type diffusion cell in order to optimize the gel formulation. The permeation rate of NAP-based gel across the excised rat skin was investigated. A significant increase in permeability parameters such as steady-state flux (J ss), permeability coefficient (K p), and penetration index (PI) was observed in optimized formulation containing 2% Transcutol as an permeation enhancer. From skin irritation test, it was concluded that the optimized novel glycofurol-based gel formulation was safe to be used for topical drug delivery. The developed glycofurol-based gel appeared promising for dermal and transdermal delivery of naproxen and could be applicable with water-insoluble drugs, which would circumvent most of the problems associated with drug therapy.  相似文献   

10.
Cell-penetrating peptides (CPPs) have been previously shown to be powerful transport vector tools for the intracellular delivery of a large variety of cargoes through the cell membrane. Intracellular delivery of plasmid DNA (pDNA), oligonucleotides, small interfering RNAs (siRNAs), proteins and peptides, contrast agents, drugs, as well as various nanoparticulate pharmaceutical carriers (e.g., liposomes, micelles) has been demonstrated both in vitro and in vivo. This review focuses on the peptide-based strategy for intracellular delivery of CPP-modified nanocarriers to deliver small molecule drugs or DNA. In addition, we discuss the rationales for the design of 'smart' pharmaceutical nanocarriers in which the cell-penetrating properties are hidden until triggered by exposure to appropriate environmental conditions (e.g., a particular pH, temperature, or enzyme level), applied local microwave, ultrasound, or radiofrequency radiation.  相似文献   

11.
Abstract

In an earlier report (1) we described the controlled follicular delivery of hydrophobic macromolecules from nonionic lipid-based formulations composed of glyceryl dilaurate (GDL), cholesterol (CH), and polyoxyethylene-10-stearyl ether (POE-10). However, the influence of lipid composition on topical delivery of marginally hydrophobic and hydrophilic drugs from these nonionic lipid-based systems has not been investigated. In this report we describe the effect of variation of GDL to POE-10 ratio in the nonionic lipid-based formulations on the extent and route of delivery of hydrocortisone and mannitol, a marginally hydrophobic and hydrophilic model drug, respectively, into and through hairless mouse skin mounted on Franz diffusion cells. The results indicate that the extent of hydrocortisone uptake increased with increasing GDL to POE-10 weight ratio whereas mannitol uptake was quite the opposite and decreased with increasing GDL to POE-10 weight ratio. The diametrically opposite trends for the two drug markers suggests strongly that hydrocortisone and mannitol are transported into and across skin from the nonionic lipid-based formulations via two distinctly different routes. Further, the finding from microautoradiographic studies that the delivery of hydrocortisone from nonionic lipid-based lipid melt formulations was predominantly across the transfollicular route compared to its transport across both the trans-epidermal and transfollicular pathways from nonionic lipid-based liposomes, suggests that it is possible to tailor formulations for specific and targeted delivery across a certain route.  相似文献   

12.
Liposomes are well known lipid carriers for drug delivery of bioactive molecules encapsulated inside their membrane. Liposomes as skin drug delivery systems were initially promoted primarily for localized effects with minimal systemic delivery. Subsequently, a novel vesicular system, transferosomes was reported for transdermal delivery with efficiency similar to subcutaneous injection. The multiple bilayered organizations of lipids applied in these vesicles structure are somewhat similar to complex nature of stratum corneal intercellular lipids domains. The incorporation of novel agents into these lipid vesicles results in the loss of entrapped markers but it is similar to fluidization of stratum corneum lipids on treatment with a penetration enhancer. This approach generated the utility of penetration enhancers/fluidizing agents in lipids vesicular systems for skin delivery. For the transdermal and topical applications of liposomes, fluidity of bilayer lipid membrane is rate limiting which governs the permeation. This article critically reviews the relevance of using different types of vesicles as a model for skin in permeation enhancement studies. This study has also been designed to encompass all enhancement measurements and analytical tools for characterization of permeability in liposomal vesicular system.  相似文献   

13.
The development of peptide-based therapeutics has suffered from challenges associated with delivery to intact tissue. In skin, an array of protein targets resides only tens of micrometers below the surface; however, because of difficulties in traversing the cutaneous barrier, the potentialfor peptide-based therapeutics remains unrealized. We have developed a general approach for topical peptide delivery into skin using releasable protein transduction sequences to enable peptide transport across tissue boundaries. Upon entry into the cell, the disulfide linkage between the peptide transduction sequences and peptide cargo is cleaved, permitting the dissociation of the highly charged peptide transduction sequences from the active peptide. A protype cargo peptide, the hemagglutinin (HA) epitope, was conjugated to a hepta-arginine protein transduction sequence via a releasable disulfide linkage. This construct penetrated the skin to deep dermis within 1 h after topical application. Consistent with the dissociation of the protein transduction and cargo sequences, absorbed protein transduction sequences and HA peptides displayed differential intracellular localization. Reversible protein transduction sequence linkage thus represents a noninvasive platform for tissue delivery of intact peptides with no requirement for viral vectors or parenteral injection and may be of broad utility in molecular therapy.  相似文献   

14.
The objective of this investigation was to evaluate the effect of delivery strategies such as cyclodextrin complexation and liposomes on the topical delivery of ketorolac acid (KTRA) and ketorolac tromethamine. Ketorolac acid–hydroxypropyl-β-cyclodextrin solid dispersions (KTRA-CD) were prepared by kneading method. The liposomes containing ketorolac tromethamine (KTRM) and KTRA-CD were prepared. The in vitro permeation of KTRM solution, KTRA solution, KTRA-CD, and liposomes containing KTRM or KTRA-CD through guinea pig skin was evaluated. The anti-inflammatory activity of the topically applied KTRA-CD gel (containing 1% w/w KTRA) was compared to that of orally delivered KTRM solution. The KTRA-CD demonstrated significantly higher transdermal transport of ketorolac as compared to all other systems whereas liposomes significantly reduced the transport of ketorolac. The anti-inflammatory activity of the topically applied KTRA-CD gel was similar to that of the orally administered KTRM. Thus, cyclodextrin complexation enabled effective transdermal delivery of the ketorolac.  相似文献   

15.
Therapeutic antibodies provide important tools in the “medicine chest” of today’s clinician for the treatment of a range of disorders. Typically monoclonal or polyclonal antibodies are administered in large doses, either directly or indirectly into the circulation, via a systemic route which is well suited for disseminated ailments. Diseases confined within a specific localized tissue, however, may be treated more effectively and at reduced cost by a delivery system which targets directly the affected area. To explore the advantages of the local administration of antibodies, we reviewed current alternative, non-systemic delivery approaches which are in clinical use, being trialed or developed. These less conventional approaches comprise: (a) local injections, (b) topical and (c) peroral administration routes. Local delivery includes intra-ocular injections into the vitreal humor (i.e. Ranibizumab for age-related macular degeneration), subconjunctival injections (e.g. Bevacizumab for corneal neovascularization), intra-articular joint injections (i.e. anti-TNF alpha antibody for persistent inflammatory monoarthritis) and intratumoral or peritumoral injections (e.g. Ipilimumab for cancer). A range of other strategies, such as the local use of antibacterial antibodies, are also presented. Local injections of antibodies utilize doses which range from 1/10th to 1/100th of the required systemic dose therefore reducing both side-effects and treatment costs. In addition, any therapeutic antibody escaping from the local site of disease into the systemic circulation is immediately diluted within the large blood volume, further lowering the potential for unwanted effects. Needle-free topical application routes become an option when the condition is restricted locally to an external surface. The topical route may potentially be utilized in the form of eye drops for infections or corneal neovascularization or be applied to diseased skin for psoriasis, dermatitis, pyoderma gangrenosum, antibiotic resistant bacterial infections or ulcerated wounds. Diseases confined to the gastrointestinal tract can be targeted directly by applying antibody via the injection-free peroral route. The gastrointestinal tract is unusual in that its natural immuno-tolerant nature ensures the long-term safety of repeatedly ingesting heterologous antiserum or antibody materials. Without the stringent regulatory, purity and clean room requirements of manufacturing parenteral (injectable) antibodies, production costs are minimal, with the potential for more direct low-cost targeting of gastrointestinal diseases, especially with those caused by problematic antibiotic resistant or toxigenic bacteria (e.g. Clostridium difficile, Helicobacter pylori), viruses (e.g. rotavirus, norovirus) or inflammatory bowel disease (e.g. ulcerative colitis, Crohn’s disease). Use of the oral route has previously been hindered by excessive antibody digestion within the gastrointestinal tract; however, this limitation may be overcome by intelligently applying one or more strategies (i.e. decoy proteins, masking therapeutic antibody cleavage sites, pH modulation, enzyme inhibition or encapsulation). These aspects are additionally discussed in this review and novel insights also provided. With the development of new applications via local injections, topical and peroral routes, it is envisaged that an extended range of ailments will increasingly fall within the clinical scope of therapeutic antibodies further expanding this market.  相似文献   

16.
Aminocarbonyloxymethyl esters based on (S)-amino acid carriers were synthesised and evaluated as potential prodrugs of carboxylic acid agents. In addition, the compounds were evaluated as topical prodrugs with the aim of improving the dermal delivery of two non-steroidal anti-inflammatory agents: naproxen and flufenamic acid. The lipophilicities of these compounds were determined and their hydrolyses in aqueous solutions and in human plasma were examined. Compounds containing a secondary carbamate group were hydrolysed at pH 7.4 by two different routes: (i) direct nucleophilic attack at the ester carbonyl carbon leading to the release of the parent carboxylic acid and (ii) intramolecular rearrangement involving an O-->N acyl migration, leading to the formation of the corresponding amide. The rearrangement pathway is highly dependent on the size of the carboxylic acid and amino acid substituents, being eliminated when the amino acid is valine or leucine. In contrast, compounds decomposed in plasma exclusively through ester hydrolysis, most releasing the parent carboxylic acid quantitatively with half-lives shorter than 5 min. The permeation of selected prodrugs across excised postmortem human skin was studied in vitro. All prodrugs evaluated exhibited a lower flux than the corresponding parent carboxylic acid. The poor skin permeation observed for compounds is most probably due to their low aqueous solubility and high partition coefficient.  相似文献   

17.
When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20-50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time.  相似文献   

18.
The study was aimed at investigating localized topical drug delivery to the breast via mammary papilla (nipple). 5-fluorouracil (5-FU) and estradiol (EST) were used as model hydrophilic and hydrophobic compounds respectively. Porcine and human nipple were used for in-vitro penetration studies. The removal of keratin plug enhanced the drug transport through the nipple. The drug penetration was significantly higher through the nipple compared to breast skin. The drug’s lipophilicity had a significant influence on drug penetration through nipple. The ducts in the nipple served as a major transport pathway to the underlying breast tissue. Results showed that porcine nipple could be a potential model for human nipple. The topical application of 5-FU on the rat nipple resulted in high drug concentration in the breast and minimal drug levels in plasma and other organs. Overall, the findings from this study demonstrate the feasibility of localized drug delivery to the breast through nipple.  相似文献   

19.
The transdermal route provides numerous advantages over conventional drug delivery routes. However, passive delivery of large molecules such as proteins through the skin is challenging due to its barrier function. Therefore, to design a successful formulation, molecular interaction of these proteins with constituent molecules present in the skin responsible for its barrier function, is necessary. In this study, we have shown through extensive computer simulations that the therapeutic protein, interferon alpha (INF), can be co-delivered through the skin using the gold nanoparticle. We carried out both steered (umbrella sampling) and unrestrained coarse-grained molecular dynamics simulation to show the molecular mechanism of absorption/permeation of protein on/through skin layer in the absence/presence of gold nanoparticle. According to the steered simulations, when INF was taken alone, the free energy minimum was observed at the head group of the skin layer, whereas, when co-delivered with AuNP, it was observed in the interior of the bilayer. Unrestrained simulations have also shown that INF was adsorbed on the skin lipid bilayer head group, while in presence of AuNP, it first complexed with the AuNP and then breached the barrier. The MD simulations thus established the transdermal delivery as a possible pathway for delivery of INF protein.  相似文献   

20.
RNA interference offers enormous potential to develop therapeutic agents for a variety of diseases. To assess the stability of siRNAs under conditions relevant to clinical use with particular emphasis on topical delivery considerations, a study of three different unmodified siRNAs was performed. The results indicate that neither repeated freeze/thaw cycles, extended incubations (over 1 year at 21 degrees C), nor shorter incubations at high temperatures (up to 95 degrees C) have any effect on siRNA integrity as measured by nondenaturing polyacrylamide gel electrophoresis and functional activity assays. Degradation was also not observed following exposure to hair or skin at 37 degrees C. However, incubation in fetal bovine or human sera at 37 degrees C led to degradation and loss of activity. Therefore, siRNA in the bloodstream is likely inactivated, thereby limiting systemic exposure. Interestingly, partial degradation (observed by gel electrophoresis) did not always correlate with loss of activity, suggesting that partially degraded siRNAs retain full functional activity. To demonstrate the functional activity of unmodified siRNA, EGFP-specific inhibitors were injected into footpads and shown to inhibit preexisting EGFP expression in a transgenic reporter mouse model. Taken together, these data indicate that unmodified siRNAs are viable therapeutic candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号