首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A simplified and defined system was developed to study in vitro calcium phosphate deposition by isolated matrix vesicles from rabbit growth plate cartilage, and to examine the relationship between vesicle phosphatase and calcium deposition. Samples of suspended vesicles containing 25 microgram of protein, were incubated for 2 h in a 45Ca-labelled solution with 2.2 mM Ca2+, 1.6 mM PO 3/4-and 1 mM ATP at pH 7.6. Calcium deposition was related to the amount of PO4 hydrolysed by matrix vesicle phosphatases from ATP and other phosphate esters. Ca2+ or Mg2+ was found to stimulate matrix vesicle ATPase, but the hydrolysis of phosphoenolpyruvate, glucose 1-phosphate, beta-glycerol phosphate and AMP was independent of either cation. All of the above substrates supported calcium deposition. 1 mM ATP was more effective than 5 mM in supporting calcium deposition, indicating inhibition of mineralization at higher ATP concentrations. Our results suggest that, in addition to concentrating calcium, vesicles provide phosphate from ATP for mineral formation and at the same time remove the inhibitory effect of ATP upon mineral deposition.  相似文献   

2.
A simplified and defined system was developed to study in vitro calcium phosphate deposition by isolated matrix vesicles from rabbit growth plate cartilage, and to examine the relationship between vesicle phosphatase and calcium deposition. Samples of suspended vesicles containing 25 μg of protein, were incubated for 2 h in a 45Ca-labelled solution with 2.2 mM Ca2+, 1.6 mM PO43? and 1 mM ATP at pH 7.6. Calcium deposition was related to the amount of PO4 hydrolysed by matrix vesicle phosphatases from ATP and other phosphate esters. Ca2+ or Mg2+ was found to stimulate matrix vesicle. ATPase, but the hydrolysis of phosphoenolpyruvate, glucose 1-phosphate, β-glycerol phosphate and AMP was independent of either cation. All of the above substrates supported calcium deposition. 1 mM ATP was more effective than 5 mM in supporting calcium deposition, indicating inhibition of mineralization at higher ATP concentrations. Our results suggest that, in addition to concentrating calcium, veiscles provide phosphate from ATP for mineral formation and at the same time remove the inhibitory effect of ATP upon mineral deposition.  相似文献   

3.
Bone is the most widespread mineralized tissue in vertebrates and its formation is orchestrated by specialized cells - the osteoblasts. Crystalline carbonated hydroxyapatite, an inorganic calcium phosphate mineral, constitutes a substantial fraction of mature bone tissue. Yet key aspects of the mineral formation mechanism, transport pathways and deposition in the extracellular matrix remain unidentified. Using cryo-electron microscopy on native frozen-hydrated tissues we show that during mineralization of developing mouse calvaria and long bones, bone-lining cells concentrate membrane-bound mineral granules within intracellular vesicles. Elemental analysis and electron diffraction show that the intracellular mineral granules consist of disordered calcium phosphate, a highly metastable phase and a potential precursor of carbonated hydroxyapatite. The intracellular mineral contains considerably less calcium than expected for synthetic amorphous calcium phosphate, suggesting the presence of a cellular mechanism by which phosphate entities are first formed and thereafter gradually sequester calcium within the vesicles. We thus demonstrate that in vivo osteoblasts actively produce disordered mineral packets within intracellular vesicles for mineralization of the extracellular developing bone tissue. The use of a highly disordered precursor mineral phase that later crystallizes within an extracellular matrix is a strategy employed in the formation of fish fin bones and by various invertebrate phyla. This therefore appears to be a widespread strategy used by many animal phyla, including vertebrates.  相似文献   

4.
The mechanism of matrix vesicle (MV) mineralization was studied using MVs isolated from normal growth plate tissue, as well as several putative intermediates in the MV mineralization pathway--amorphous calcium phosphate (ACP), calcium phosphate phosphatidylserine complex (CPLX) and hydroxyapatite (HAP). Radionuclide uptake and increase in turbidity were used to monitor mineral formation during incubation in synthetic cartilage lymph (SCL). Inhibitors of phosphate (Pi) metabolism, as well as replacing Na(+) with various cations, were used to study MV Pi transport, which had been thought to be Na(+)-dependent. MVs induced rapid mineralization approximately 3 h after addition to SCL; CPLX and HAP caused almost immediate induction; ACP required approximately 1 h. Phosphonoformate (PFA), a Pi analog, potently delayed the onset and reduced the rate of mineral formation of MV and the intermediates with IC(50)'s of 3-6 microM and approximately 10 microM, respectively. PFA:Pi molar ratios required to reduce the rate of rapid mineralization by 50% were approximately 1:30 for ACP, approximately 1:20 for HAP, approximately 1:3.3 for CPLX, and approximately 1:2.0 for MVs. MV mineralization was not found to be strictly Na(+)-dependent: substitution of Li(+) or K(+) for Na(+) had minimal effect; while N-methyl D-glucamine (NMG(+)) was totally inhibitory, choline(+) was clearly stimulatory. Na(+) substitutions had minimal effect on HAP- and CPLX-seeded mineral formation. However with ACP, NMG(+) totally blocked and choline(+) stimulated, just as they did MV mineralization. Thus, kinetic analyses indicate that ACP is a key intermediate, nevertheless, formation of CPLX appears to be the rate-limiting factor in MV mineralization.  相似文献   

5.
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid–protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid–protein and lipid–lipid interfaces throughout the process.  相似文献   

6.
Pseudoxanthoma elasticum (PXE) is a heritable multisystem disorder characterized by ectopic mineralization. However, the structure of the mineral deposits, their interactions with the connective tissue matrix, and the details of the progressive maturation of the mineral crystals are currently unknown. In this study, we examined the mineralization processes in Abcc6(-/-) mice, a model system for PXE, by energy dispersive X-ray and Fourier transform infrared imaging spectroscopy (FT-IRIS). The results indicated that the principal components of the mineral deposits were calcium and phosphate which co-localized within the histologically demonstrable lesions determined by topographic mapping. The Ca/P ratio increased in samples with progressive mineralization reaching the value comparable to that in endochondral bone. A progressive increase in mineralization was also reflected by increased mineral-to-matrix ratio determined by FT-IRIS. Determination of the mineral phases by FT-IRIS suggested progressive maturation of the mineral deposits from amorphous calcium phosphate to hydroxyapatite. These results provide critical information of the mechanisms of mineralization in PXE, with potential pharmacologic implications.  相似文献   

7.
Matrix vesicles (MVs) are extracellular organelles that initiate mineral formation, accumulating inorganic phosphate (P(i)) and calcium leading to the formation of hydroxyapatite (HA) crystals, the main mineral component of bones. MVs are produced during bone formation, as well as during the endochondral calcification of cartilage. MVs are released into the extracellular matrix from osseous cells such as osteoblasts and hypertrophic chondrocytes. In this report, using 1-D SDS-PAGE, in-gel tryptic digestion and an LC-MS-MS/MS protein identification protocol, we characterized the proteome of MVs isolated from chicken embryo (Gallus gallus) bones and cartilage. We identified 126 gene products, including proteins related to the extracellular matrix and ion transport, as well as enzymes, cytoskeletal, and regulatory proteins. Among the proteins recognized for the first time in MVs were aquaporin 1, annexin A1 (AnxA1), AnxA11, glycoprotein HT7, G(i) protein alpha2, and scavenger receptor type B. The pathways for targeting the identified proteins into MVs and their particular functions in the biomineralization process are discussed. Obtaining a knowledge of the functions and roles of these proteins during embryonic mineralization is a prerequisite for the overall understanding of the initial mineral formation mechanisms.  相似文献   

8.
The present studies show that the previously reported ability of fetuin to inhibit the precipitation of hydroxyapatite from supersaturated solutions of calcium and phosphate in vitro is accompanied by the formation of the fetuin-mineral complex, a high molecular mass complex of calcium phosphate mineral and the proteins fetuin and matrix Gla protein that was initially discovered in the serum of rats treated with etidronate and that appears to play a critical role in inhibiting calcification in vivo. Rat serum potently inhibited the precipitation of calcium phosphate mineral when the concentration of calcium and phosphate were increased by 10 mm each, and the modified serum was incubated at 37 degrees C for 9 days; in the absence of serum, precipitation occurred in seconds. Large amounts of the fetuin-mineral complex were generated in the first 3 h of this incubation and remained throughout the 9-day incubation. Purified bovine fetuin inhibited the precipitation of mineral for over 14 days in a solution containing 5 mM calcium and phosphate at pH 7.4 at 22 degrees C, whereas precipitation occurred in minutes without fetuin. There was a biphasic drop in ionic calcium in the fetuin solution, however, from 5 to 3 mM in the first hour and from 3 to 0.9 mM between 20 and 24 h; these changes in ionic calcium are due to the formation of complexes of calcium, phosphate, and fetuin. The complex found at 24 h to 14 days is identical to the fetuin-mineral complex found in the serum of etidronate-treated rats, whereas the complex found between 1 and 20 h is less stable.  相似文献   

9.
High-voltage (1.0 MV) electron microscopy and stereomicroscopy, electron probe microanalysis, electron diffraction and three-dimensional computer reconstruction, have been used to examine the spatial relationship between the inorganic crystals of calcium phosphate and the collagen fibrils of pickerel and herring bone. High-voltage stereo electron-micrographs were obtained of cross-sections of the cylinder-shaped intramuscular bones in uncalcified regions, in regions where only one or only several crystals had been deposited in some of the fibrils, and in successive sections containing progressively more mineral crystals until the stage of full mineralization was reached. High-resolution electron probe microanalysis confirmed that the electron-dense particles contained calcium and phosphorus. In the earliest stages of mineralization and progressing throughout the mineralization process, the crystals are located only within the collagen fibrils; crystals are not observed free in the extracellular spaces between collagen fibrils. The progressive increase in the mass of mineral deposited in the bone tissue with time occurs, essentially, completely within the collagen fibrils including the stage of full mineralization. At this stage, cross-sectional profiles of collagen fibrils are completely obliterated by mineral. A small number of crystals that are located on or close to the surface of the fibrils appear to extend a very short distance into the spaces between the fibrils. These ultrastructural observations of the very onset of calcification in which nucleation of the calcium phosphate crystals is clearly shown to begin within specific volumes of collagen fibrils, and of the subsequent temporal and spatial sequences of this phenomenon, which shows that calcification continues wholly within the collagen fibrils until maximum calcification is achieved, add important information on the basic physical chemical mechanism of the calcification and the structural elements that are involved. The spatial and temporal independence of the sites where mineralization is initiated establishes that such ultrastructural locations within individual collagen fibrils represent independent, physical chemical nucleation loci. The findings are totally inconsistent with the proposal that crystals must first be deposited in matrix vesicles, or other components such as mitochondria, and subsequently released and propagated in the interfibrillar space, until they eventually reach and impregnate the hole zone regions of the collagen fibrils. Three-dimensional computer reconstruction of serial transverse and longitudinal sections demonstrates periodic swellings along the collagen fibrils, corresponding to the hole zone region of their axial period as mineralization proceeds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
1. The dissimilation of a number of externally added hexose phosphates and 5′-nucleotides by the perfused rat heart is described, and non-specific esterase and 5′-nucleotidase activity associated with the superficial cell membrane or vascular system has been demonstrated. 2. The rate of production of 14CO2 from [U-14C]glucose 6-phosphate suggests that oxidation occurred after hydrolysis to glucose. The incorporation of isotope from [U-14C]glucose 6-phosphate into glycogen was small, and similar to that obtained with [U-14C]glucose as substrate. 3. Glucose 6-phosphate was also partially isomerized to fructose 6-phosphate. Similarly, fructose 6-phosphate was converted mainly into glucose 6-phosphate, but also into glucose and inorganic phosphate. When fructose 1,6-diphosphate was added to the perfusate, a mixture of glucose 6-phosphate, fructose 6-phosphate and triose phosphates accumulated in the medium approximately in the equilibrium proportions of the phosphohexose-isomerase and triose phosphate-isomerase reactions, together with inorganic phosphate and some glucose. Glucose 1-phosphate was hydrolysed to glucose, but was not converted into glucose 6-phosphate. Leakage of enzymes out into the perfusion fluid did not occur. 4. This demonstration that phosphohexose isomerase, triose phosphate isomerase and aldolase may react with extracellular substrates at an appreciable rate suggests that these enzymes are attached to the cell membrane.  相似文献   

11.
Summary Rana ridibunda erythrocytes have a complete sequence of glycolytic enzymes but not the tricarboxylic acid cycle enzymes.The steady state contents of the glycolytic intermediates were measured in quick frozenRana ridibunda erythrocytes. A comparison of the mass action ratios with the equilibrium constants for the glycolytic reactions showed that phosphoglucomutase, phosphoglucose isomerase, aldolase, triosephosphate isomerase, phosphoglycerate mutase and enolase reactions are all near equilibrium whilst hexokinase, phosphofructokinase and pyruvate kinase are displaced from equilibrium.The steady state contents of glycolytic intermediates, lactate, adenine nucleotides, inorganic phosphate have been measured during various periods up to 4 h of incubation of erythrocytes in the presence of glucose. In the incubation experiment glycolysis had been stimulated by the high pH-value of the medium. After 4 h of incubation 3 patterns of changes can be distinguished. One group of intermediates (glucose, glucose 6-phosphate, 2-phosphoglycerate and inorganic phosphate) in which the concentration of metabolites was lower than the zero time values. A second group of metabolites (fructose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate and AMP) in which the concentration was about the same at zero time and after 4 h of incubation. The metabolites of the third group (dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, 1,3-diphosphoglycerate, 2,3-diphosphoglycerate, 3-phosphoglycerate, pyruvate, lactate, ADP, ATP and glucose 1-phosphate) all increased their content during the 4 h of incubation in comparison to the zero time values.From the results it appears that in the amphibian erythrocyte glycolysis seems to be similar to that of mammalian erythrocytes as far its control and organisation is concerned down to the level of PEP, with the exception of the low concentration of phosphoglycerate compounds.Abbreviations 2,3DPG 2,3-diphosphoglycerate - EDTA [ethylene dinitrilo]-tetra-acetic acid - P i inorganic phosphate - DTNB 5,5-dithio-bis-(2-nitrobenzoic acid) - PEP phosphoenolpyruvate - RBC red blood cells  相似文献   

12.
The most widely accepted hypothesis to account for maturational changes in the X-ray diffraction characteristics of bone mineral has been the 'amorphous calcium phosphate theory', which postulates that an initial amorphous calcium phosphate solid phase is deposited that gradually converts to poorly crystalline hydroxyapatite. Our studies of bone mineral of different ages by X-ray radial distribution function analysis and 31P n.m.r. have conclusively demonstrated that a solid phase of amorphous calcium phosphate does not exist in bone in any significant amount. 31P n.m.r. studies have detected the presence of acid phosphate groups in a brushite-like configuration. Phosphoproteins containing O-phosphoserine and O-phosphothreonine have been isolated from bone matrix and characterized. Tissue and cell culture have established that they are synthesized in bone, most likely by the osteoblasts. Physiochemical and pathophysiological studies support the thesis that the mineral and organic phases of bone and other vertebrate mineralized tissues are linked by the phosphomonester bonds of O-phosphoserine and O-phosphothreonine, which are constituents of both the structural organic matrix and the inorganic calcium phosphate crystals.  相似文献   

13.
The formation of fetuin-A-containing calciprotein particles (CPP) may facilitate the clearance of calcium phosphate nanocrystals from the extracellular fluid. These crystals may otherwise seed extra-osseous mineralization. Fetuin-A is a partially phosphorylated glycoprotein that plays a critical role in stabilizing these particles, inhibiting crystal growth and aggregation. CPP removal is thought to be predominantly mediated by cells of the reticuloendothelial system via type I and type II class A scavenger receptor (SR-AI/II). Naked calcium phosphate crystals are known to stimulate macrophages and other cell types in vitro, but little is known of the effect of CPP on these cells. We report here, for the first time, that CPP induce expression and secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-1β in murine RAW 264.7 macrophages. Importantly, however, CPP induced significantly lower cytokine secretion than hydroxyapatite (HAP) crystals of equivalent size and calcium content. Furthermore, CPP only had a modest effect on macrophage viability and apoptosis, even at very high levels, compared to HAP crystals, which were strongly pro-apoptotic at much lower levels. Fetuin-A phosphorylation was found to modulate the effect of CPP on cytokine secretion and apoptosis, but not uptake via SR-AI/II. Prolonged exposure of macrophages to CPP was found to result in up-regulated expression of SR-AI/II. CPP formation may help protect against some of the pro-inflammatory and harmful effects of calcium phosphate nanocrystals, perhaps representing a natural defense system for calcium mineral stress. However, in pathological states where production exceeds clearance capacity, these particles may still stimulate pro-inflammatory and pro-apoptotic cascades in macrophages, which may be important in the pathogenesis of vascular calcification.  相似文献   

14.
A simple, rapid, and reproducible method of determining glucose-6-phosphatase activity is described. The glucose 6-phosphate hydrolysis is accompanied by the disappearance of the protons from the medium owing to a phosphate species pK change from 6.1 (in glucose 6-phosphate) to 6.9 (in inorganic phosphate). Alkalization is registered by a pH meter with a recorder. The method described in this paper may be used in routine determinations of glucose-6-phosphatase activity.  相似文献   

15.

Background

Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO3 )n) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization.

Principal Findings/Methodology

The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO4 3−) concentration while permitting the accumulation of a high total PO4 3− concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO4 3− and free calcium lowers the relative apatite saturation, preventing formation of apatite crystals. Identified in situ within resorbing bone and mineralizing cartilage by the fluorescent reporter DAPI (4′,6-diamidino-2-phenylindole), polyphosphate formation prevents apatite crystal precipitation while accumulating high local concentrations of total calcium and phosphate. When mineralization is required, tissue non-specific alkaline phosphatase, an enzyme associated with skeletal and cartilage mineralization, cleaves orthophosphates from polyphosphates. The hydrolytic degradation of polyphosphates in the calcium-polyphosphate complex increases orthophosphate and calcium concentrations and thereby favors apatite mineral formation. The correlation of alkaline phosphatase with this process may be explained by the destruction of polyphosphates in calcifying cartilage and areas of bone formation.

Conclusions/Significance

We hypothesize that polyphosphate formation and hydrolytic degradation constitute a simple mechanism for phosphate accumulation and enzymatic control of biological apatite saturation. This enzymatic control of calcified tissue mineralization may have permitted the development of a phosphate-based, mineralized endoskeleton that can be continually remodeled.  相似文献   

16.
The dynamics of the glucose 6-phosphatase system were investigated in intact rat liver microsomes using a fast-sampling, rapid-filtration apparatus. Glucose and phosphate transport followed single exponential kinetics, appeared to be homogeneous, was unaffected by unlabeled substrate concentrations up to 100 mm, proved insensitive to various potential inhibitors, and demonstrated similarly low energies of activation. The extent of tracer accumulation from glucose 6-phosphate depended on which of the glucose or phosphate moieties was the labeled species in the parent molecule. The rates of tracer equilibration reflected those of glucose or phosphate transport but similar initial rates of uptake were observed for the glucose and phosphate products of hydrolysis. However, the latter accounted for only 12–13% of the steady-state rate of total glucose production. It is concluded that tracer uptake cannot represent substrate transport, that labeled glucose 6-phosphate at best represents a tiny fraction of the intramicrosomal glucose or phosphate pools, and that glucose 6-phosphate transport is not an obligatory prerequisite to its hydrolysis. The latter conclusion invalidates a major postulate of the substrate transport-catalytic unit concept but proves compatible with a conformational model whereby glucose 6-phosphate transport and hydrolysis are tightly coupled processes while glucose and phosphate share, along with water and a variety of other organic and inorganic solutes, a common porelike structure for their transport through the microsomal membrane. Received: 26 May 2000/Revised: 16 October 2000  相似文献   

17.
1. The metabolism of glucose 6-phosphate in rat cerebral-cortex slices in vitro was compared with that of glucose. It was found that a glucose 6-phosphate concentration of 25mm was required to achieve maximal oxygen uptake rates and ATP concentrations, whereas only 2mm-glucose was required. 2. When 25mm-[U-(14)C]glucose 6-phosphate was used as substrate, the pattern of labelling of metabolites was found to be quantitatively and qualitatively similar to the pattern found with 10mm-[U-(14)C]glucose, except that incorporation into [(14)C]lactate was decreased, and significant amounts of [(14)C]glucose and [(14)C]mannose phosphate and [(14)C]fructose phosphate were formed. 3. Unlabelled glucose (10mm) caused a tenfold decrease in the incorporation of 25mm-[U-(14)C]glucose 6-phosphate into all metabolites except [(14)C]glucose and [(14)C]mannose phosphate and [(14)C]fructose phosphate. In contrast, unlabelled glucose 6-phosphate (25mm) had no effect on the metabolism of 10mm-[U-(14)C]glucose other than to increase markedly the incorporation into, and amount of, [(14)C]lactate, the specific radioactivity of this compound remaining approximately the same. 4. The effect of glucose 6-phosphate in increasing lactate formation from glucose was found to occur also with a number of other phosphate esters and with inorganic phosphate. Further investigation indicated that the effect was probably due to binding of medium calcium by the phosphate moiety, thereby de-inhibiting glucose uptake. 5. Incubations carried out in a high-phosphate high-potassium medium gave a pattern of metabolism similar to that found when slices were subjected to depolarizing conditions. Tris-buffered medium gave similar results to bicarbonate-buffered saline, except that it allowed much less lactate formation from glucose. 6. Part of the glucose formed from glucose 6-phosphate was extracellular and was produced at a rate of 12mumol/h per g of tissue in Krebs tris medium when glycolysis was blocked. The amount formed was much less when 25mm-P(i) or 26mm-HCO(3) (-) was present, the latter being in the absence of tris. 7. Glucose 6-phosphate also gave rise to an intracellular glucose pool, whereas no intracellular glucose was detectable when glucose was the substrate.  相似文献   

18.
In this review the roles of specific proteins during the first step of mineralization and nucleation are discussed. Mineralization is initiated inside the extracellular organelles-matrix vesicles (MVs). MVs, containing relatively high concentrations of Ca2+ and inorganic phosphate (Pi), create an optimal environment to induce the formation of hydroxyapatite (HA). Special attention is given to two families of proteins present in MVs, annexins (AnxAs) and tissue-nonspecific alkaline phosphatases (TNAPs). Both families participate in the formation of HA crystals. AnxAs are Ca2+ - and lipid-binding proteins, which are involved in Ca2+ homeostasis in bone cells and in extracellular MVs. AnxAs form calcium ion channels within the membrane of MVs. Although the mechanisms of ion channel formation by AnxAs are not well understood, evidence is provided that acidic pH or GTP contribute to this process. Furthermore, low molecular mass ligands, as vitamin A derivatives, can modulate the activity of MVs by interacting with AnxAs and affecting their expression. AnxAs and other anionic proteins are also involved in the crystal nucleation. The second family of proteins, TNAPs, is associated with Pi homeostasis, and can hydrolyse a variety of phosphate compounds. ATP is released in the extracellular matrix, where it can be hydrolyzed by TNAPs, ATP hydrolases and nucleoside triphosphate (NTP) pyrophosphohydrolases. However, TNAP is probably not responsible for ATP-dependent Ca2+/phosphate complex formation. It can hydrolyse pyrophosphate (PPi), a known inhibitor of HA formation and a byproduct of NTP pyrophosphohydrolases. In this respect, antagonistic activities of TNAPs and NTP pyrophosphohydrolases can regulate the mineralization process.  相似文献   

19.

Background

Enamel synthesis is a highly dynamic process characterized by simultaneity of matrix secretion, assembly and processing during apatite mineralization. MMP-20 is the first protease to hydrolyze amelogenin, resulting in specific cleavage products that self-assemble into nanostructures at specific mineral compositions and pH. In this investigation, enzyme kinetics of MMP-20 proteolysis of recombinant full-length human amelogenin (rH174) under different mineral compositions is elucidated.

Methods

Recombinant amelogenin was cleaved by MMP-20 under various physicochemical conditions and the products were analyzed by SDS-PAGE and MALDI-TOF MS.

Results

It was observed that mineral ions largely affect cleavage pattern, and enzyme kinetics of rH174 hydrolysis. Out of the five selected mineral ion compositions, MMP-20 was most efficient at high calcium concentration, whereas it was slowest at high phosphate, and at high calcium and phosphate concentrations. In most of the compositions, N- and C-termini were cleaved rapidly at several places but the central region of amelogenin was protected up to some extent in solutions with high calcium and phosphate contents.

Conclusion

These in vitro studies showed that the chemistry of the protein solutions can significantly alter the processing of amelogenin by MMP-20, which may have significant effects in vivo matrix assembly and subsequent calcium phosphate mineralization.

General significance

This study elaborates the possibilities of the processing of the organic matrix into mineralized tissue during enamel development.  相似文献   

20.
Fourier-transform infrared microspectroscopy (FT-IRM) was used to study bone mineralization processes in an in vivo model and in enamel in osteogenesis imperfecta. Finally, the ability of FT-IRM to map new bone formed in implanted macroporous calcium phosphate biomaterial from sections was reported for the first time. FTIRM allowed the correlation of the microstructure of bone formation in the in vivo model with modifications in carbonate and phosphate environments of the mineral phases during maturation. FT-IRM analysis on enamel sections revealed changes in the mineral environment of carbonate and phosphate ions and probably in the size of enamel crystals. These modifications contributed to the fragility of enamel in osteogenesis imperfecta. The infrared functional group imaging of a part of implanted biomaterial and the bone ingrowth provided the visualization of chemical modifications occurring in biomaterial implants at 20 μm spatial resolution. The use of FT-IRM, in conjunction with appropriate sampling methods and data analysis should provide further insight into the molecular structure of mineral phases of calcified tissues and help to elucidate mineralization processes, skeletal disorders and properties of the biomaterials used as bone substitute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号