首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic and magnetic properties of the selenium-substituted 2[4Fe-4Se]2+/+ ferredoxin (Fd) from Clostridium pasteurianum have been investigated by EPR and M?ssbauer spectroscopy. The [4Fe-4Se]2+ clusters of oxidized Fd are diamagnetic and the M?ssbauer spectra are nearly identical to those of oxidized 2[4Fe-4S]2+ Fd. The addition of 2e- per molecule of Se-substituted Fd causes the simultaneous appearance of three EPR signals: one (g1,2,3 = 2.103, 1.940, 1.888) is reminiscent of [4Fe-4S]+ EPR spectra and accounts for 0.7 to 0.8 spin/molecule. The two others consist of a broad signal with g = 4.5, 3.5, and approximately 2 (0.7 to 0.8 spin/molecule) and of a narrow peak at g = 5.172 which is observed up to 60 K. Peculiar features are also present in the M?ssbauer spectra of 2[4Fe-4Se]+ Fd below 20 K: a subcomponent with lines near to +/- 4 mm/s and accounting for 20% of the total iron corresponds to two antiferromagnetically coupled sites in approximately a 3:1 ratio and displays fully developed paramagnetic hyperfine interactions at 4.2 K without any applied field. At 77 K, however, the reduced Se-substituted Fd yields a M?ssbauer spectrum similar to that of 2[4Fe-4S]+ Fd. The new EPR and M?ssbauer spectroscopic features of the 2[4Fe-4Se]+ Fd are attributed to S = 3/2 and S = 7/2 spin states which accompany the classical S = 1/2 state of [4Fe-4X]+ (X = S, Se) structures.  相似文献   

2.
M?ssbauer, 57Fe ENDOR, CW and pulsed EPR experiments were performed on the reduced and the oxidized high-potential iron proteins (HiPIPs) of the wild type (WT) and the C77S mutant from Chromatium vinosum. The EPR spectra of the oxidized WT and mutant show three species respectively having nearly the same g-values but strongly changed spectral contributions. Relaxation times were estimated for oxidized WT and mutant at T = 5 K with pulsed EPR. A-tensor components of both iron pairs were obtained by 57Fe ENDOR, proving a similar magnetic structure for the WT and the mutant. Electronic relaxation has to be taken into account at T = 5 K in native and mutated oxidized HiPIPs to achieve agreement between M?ssbauer and 57Fe ENDOR spectroscopies. The M?ssbauer spectroscopy shows that the oxidized cluster contains a pure ferric and a mixed-valence iron pair coupled antiparallel. While all cluster irons from reduced C. vinosum WT are indistinguishable in the M?ssbauer spectrum, the reduced C77S mutant shows a non-equivalence between the serine-bound and the three cysteine-ligated iron ions. The M?ssbauer parameters confirm a loss of the covalent character of the iron bond when S is replaced by O and indicate a shift of the cluster's electron cloud towards the serine. M?ssbauer spectra of the oxidized mutant can be simulated with two models: model I introduces a single electronic isomer with the serine always ligated to a ferric iron. Model II assumes two equally populated electronic isomers with the serine ligated to a ferric iron and a mixed-valence iron, respectively. The latter model is in better agreement with EPR and NMR.  相似文献   

3.
We have studied the Fe protein (Av2) of the Azotobacter vinelandii nitrogenase system with M?ssbauer and EPR spectroscopies and magnetic susceptometry. In the oxidized state the protein exhibits M?ssbauer spectra typical of diamagnetic [4Fe-4S]2+ clusters. Addition of Mg.ATP or Mg.ADP causes a pronounced decline in the quadrupole splitting of the M?ssbauer spectra of the oxidized protein. Our studies show that reduced Av2 in the native state is heterogeneous. Approximately half of the molecules contain a [4Fe-4S]1+ cluster with electronic spin S = 1/2 and half contain a [4Fe-4S]1+ cluster with spin S = 3/2. The former yields the characteristic g = 1.94 EPR signal whereas the latter exhibits signals around g = 5. The magnetization of reduced Av2 is dominated by the spin S = 3/2 form of its [4Fe-4S]1+ clusters. These results explain a long standing puzzle, namely why the integrated spin intensity of the g = 1.94 EPR signal is substantially less than 1 spin/4 Fe atoms. In 50% ethylene glycol, 90% of the clusters are in the spin S = 1/2 form whereas, in 0.4 M urea, 85% are in the S = 3/2 form. In 0.4 M urea, the EPR spectrum of reduced Av2 exhibits well defined resonances at g = 5.8 and 5.15, which we assign to the S = 3/2 system. The EPR and M?ssbauer studies yield a zero-field splitting of 2D approximately equal to -5 cm-1 for this S = 3/2 state.  相似文献   

4.
 Ferredoxins that contain 2[4Fe-4S]2+/+ clusters can be divided into two classes. The "clostridial-type" ferredoxins have two CysXXCysXXCysXXXCysPro motifs. The "photosynthetic bacterial and nif-related" ferredoxins have one motif of that type and one more unusual CysXXCysX7–9CysXXXCysPro motif. In Azotobacter vinelandii three gene sequences have been reported that contain the latter motif, but until now none of the gene products has been purified. Here we report the purification of a small anionic [Fe-S] protein with yields of ∼3 mg per 500 g cell paste. NH2-terminal sequence analysis shows that this protein is the product of a previously sequenced A. vinelandii gene that is found upstream of fixA and is cotranscribed with fixABCX. That gene was originally named fixP, but since that gene designation is now commonly used for a very different cb-type cytochrome oxidase we have renamed the gene fixFd and its product Fix Fd. Its sequence places Fix Fd in the class of "photosynthetic bacterial and nif-related" 2[4Fe-4S]2+/1+ ferredoxins that includes Chromatium vinosum ferredoxin. Studies of the purified protein by Fe analysis, absorption, CD and EPR spectroscopies and electrochemistry confirm this characterization; the reduction potentials of the two clusters are –440 mV vs SHE. The fact that A. vinelandii synthesizes three different proteins with the same sequence motif, each of which is likely to have a different function, shows that although sequence motifs may be used reliably to classify ferredoxins by cluster type they cannot yet be used reliably for classifying ferredoxins by function. Received: 31 January 1997 / Accepted: 9 June 1997  相似文献   

5.
M?ssbauer studies of the hemoprotein subunit (SiR) of E. coli sulfite reductase have shown that the siroheme and the [4Fe-4S] cluster are exchange-coupled. Here we report M?ssbauer studies of SiR complexed with either CO or CN- and of SiR in the presence of the chaotropic agent dimethyl sulfoxide (Me2SO). The spectra of one-electron-reduced SiR X CN show that all five iron atoms reside in a diamagnetic environment; the ferroheme X CN complex is low spin and the [4Fe-4S] cluster is in the 2+ oxidation state. Titration with ferricyanide affords a CN- complex of oxidized SiR in which the siroheme iron is low spin ferric, with the cluster remaining in the 2+ state. At low temperatures, paramagnetic hyperfine interactions are observed for the iron sites of the cluster, suggesting that it is exchange-coupled to the heme iron. Reduction of one-electron-reduced SiR X CN and SiR X CO yields complexes with "g = 1.94"-type EPR signals showing that the second electron is accommodated by the iron-sulfur cluster. The fully reduced complexes yield well resolved M?ssbauer spectra which were analyzed in the spin Hamiltonian formalism. The analysis shows that the cluster subsites are equivalent in pairs, one pair having properties reminiscent of ferric sites whereas the other pair has features more typical of ferrous sites. The M?ssbauer spectra of oxidized SiR kept in 60% (v/v) Me2SO are virtually identical with those observed for SiR in standard buffer, implying that the coupling is maintained in the presence of the chaotrope. Fully reduced SiR displays an EPR signal with g values of g = 2.53, 2.29, and 2.07. In 60% Me2SO, this signal vanishes and a g = 1.94 signal develops; this transition is accompanied by a change in the spin state of the heme iron from S = 1 (or 2) to S = O.  相似文献   

6.
The nature and properties of the iron-sulphur (Fe-S) cluster in as-prepared and reduced biotin synthase of Escherichia coli have been investigated by M?ssbauer spectroscopy. Our data clearly demonstrate that in the as-prepared sample, the cluster is present as [2Fe-2S](2+) with isomer shift, delta = 0.29 mm/s and quadrupole splitting, DeltaE(Q) = 0.53 mm/s, indicating incomplete cysteinyl-S coordination. Anaerobic reduction by dithionite in the presence of 55% (v/v) glycerol converts this form to [4Fe-4S](2+) (delta = 0.45 mm/s and DeltaE(Q) = 1.11 mm/s) and is accompanied by some destruction to Fe(2+). This cluster conversion is reversible and when exposed to air, the [4Fe-4S](2+) cluster is quantitatively reconverted to the [2Fe-2S](2+) cluster without any further cluster degradation.  相似文献   

7.
The alphabeta dimer of active nitrile hydratase from Rhodococcus sp. R312 contains one low-spin ferric ion that is coordinated by three Cys residues, two N-amide groups from the protein backbone, and one OH(-). The enzyme isolated from bacteria grown in the dark is inactive and contains the iron site as a six-coordinate diamagnetic Fe-nitrosyl complex, called NH(dark). The active state can be obtained from the dark state by photolysis of the Fe-NO bond at room temperature. Activation is accompanied by the conversion of NH(dark) to a low-spin ferric complex, NH(light), exhibiting an S = (1)/(2) EPR signal with g values of 2.27, 2.13, and 1.97. We have characterized both NH(dark) and NH(light) with M?ssbauer spectroscopy. The z-axis of the 57Fe magnetic hyperfine tensor, A, of NH(light) was found to be rotated by approximately 45 degrees relative to the z-axis of the g tensor (g(z) = 1.97). Comparison of the A tensor of NH(light) with the A tensors of low-spin ferric hemes indicates a substantially larger degree of covalency for nitrile hydratase. We have also performed photolysis experiments between 2 and 20 K and characterized the photolyzed products by EPR and M?ssbauer spectroscopy. Photolysis at 4.2 K in the M?ssbauer spectrometer yielded a five-coordinate low-spin ferric species, NH(A), which converted back into NH(dark) when the sample was briefly warmed to 77 K. We also describe preliminary EPR photolysis studies that have yielded new intermediates.  相似文献   

8.
Putidamonooxin, the oxygenase of a 4-methoxybenzoate monooxygenase enzyme system, catalyzes the oxidative O-demethylation of the substrate 4-methoxybenzoate in conjunction with the NADH:putidamonooxin oxidoreductase. Putidamonooxin is a conjugated iron-sulfur protein which needs iron ions as cofactors for its enzymatic activity. Putiamonooxin was isolated from Pseudomonas putida, which was grown on a 57Fe-enriched culture medium. Thus putidamonooxin was enriched in vivo with 57Fe up to about 80%. During our M?ssbauer study of putidamonooxin a number of parameters have been varied: (a) the oxidation state of putidamonooxin (oxidized, reduced and aerobically reoxidized); (b) the substrate bound to putidamonooxin (4-methoxybenzoate, benzoate, 4-tert-butylbenzoate); (c) the temperature between 2.7 K and 245 K; (d) the applied magnetic field between 0 and 0.1 T and (e) the amount of iron cofactor. From our M?ssbauer results it is obvious that the iron-sulfur centers of putidamonooxin are [2 Fe-2S] clusters similar to those of the plant-type ferredoxins. Further, we have evidence for the existence of iron ions (one per [2 Fe-2S] cluster), which serve as cofactors for the dioxygen activation, functioning as the dioxygen binding site and mediating the electron flow from the [2 Fe-2S] cluster to dioxygen.  相似文献   

9.
The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with M?ssbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and M?ssbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The M?ssbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796).  相似文献   

10.
Iron-57 M?ssbauer, electron paramagnetic resonance (EPR) and H-1 nuclear magnetic resonance (NMR) studies of iron-bleomycin complexes in the pH range from 1.0 to 6.0 are reported. Sequential protonation of the ligands produces a variety of high-spin and low-spin complexes of the metal. Of particular interest is the reversible equilibrium between Fe(III)- and oxygen-stable Fe(II)-bleomycin. Below pH 3.5 Fe(II) complexes form, with maximal reduction occurring at approximately pH 2. At still lower pH, Fe(III) complexes unassociated with bleomycin become dominant. The observed reduction in the absence of exogenous reducing agents suggests the possible involvement of intramolecular autoreduction in bleomycin-mediated DNA degradation.  相似文献   

11.
The putative [6Fe-6S] prismane cluster in the 6-Fe/S-containing protein from Desulfovibrio vulgaris, strain Hildenborough, has been enriched to 80% in 57Fe, and has been characterized in detail by S-, X-, P- and Q-band EPR spectroscopy, parallel-mode EPR spectroscopy and high-resolution 57Fe M?ssbauer spectroscopy. In EPR-monitored redox-equilibrium titrations, the cluster is found to be capable of three one-electron transitions with midpoint potentials at pH 7.5 of +285, +5 and -165 mV. As the fully reduced protein is assumed to carry the [6Fe-6S]3+ cluster, by spectroscopic analogy to prismane model compounds, four valency states are identified in the titration experiments: [6Fe-6S]3+, [6Fe-6S]4+, [6Fe-6S]5+, [6Fe-6S]6+. The fully oxidized 6+ state appears to be diamagnetic at low temperature. The prismane protein is aerobically isolated predominantly in the one-electron-reduced 5+ state. In this intermediate state, the cluster exists in two magnetic forms: 10% is low-spin S = 1/2; the remainder has an unusually high spin S = 9/2. The S = 1/2 EPR spectrum is significantly broadened by ligand (2.3 mT) and 57Fe (3.0 mT) hyperfine interaction, consistent with a delocalization of the unpaired electron over 6Fe and indicative of at least some nitrogen ligation. At 35 GHz, the g tensor is determined as 1.971, 1.951 and 1.898. EPR signals from the S = 9/2 multiplet have their maximal amplitude at a temperature of 12 K due to the axial zero-field splitting being negative, D approximately -0.86 cm-1. Effective g = 15.3, 5.75, 5.65 and 5.23 are observed, consistent with a rhombicity of [E/D] = 0.061. A second component has g = 9.7, 8.1 and 6.65 and [E/D] = 0.108. When the protein is reduced to the 4+ intermediate state, the cluster is silent in normal-mode EPR. An asymmetric feature with effective g approximately 16 is observed in parallel-mode EPR from an integer spin system with, presumably, S = 4. The fully reduced 3+ state consists of a mixture of two S = 1/2 ground state. The g tensor of the major component is 2.010, 1.825 and 1.32; the minor component has g = 1.941 and 1.79, with the third value undetermined. The sharp line at g = 2.010 exhibits significant convoluted hyperfine broadening from ligands (2.1 mT) and from 57Fe (4.6 mT). Zero-field high-temperature M?ssbauer spectra of the protein, isolated in the 5+ state, quantitatively account for the 0.8 fractional enrichment in 57Fe, as determined with inductively coupled plasma mass spectrometry.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The hydrogenase (EC 1.2.2.1) of Desulfovibrio gigas is a complex enzyme containing one nickel center, one [3Fe-4S] and two [4Fe-4S] clusters. Redox intermediates of this enzyme were generated under hydrogen (the natural substrate) using a redox-titration technique and were studied by EPR and M?ssbauer spectroscopy. In the oxidized states, the two [4Fe-4S]2+ clusters exhibit a broad quadrupole doublet with parameters (apparent delta EQ = 1.10 mm/s and delta = 0.35 mm/s) typical for this type of cluster. Upon reduction, the two [4Fe-4S]1+ clusters are spectroscopically distinguishable, allowing the determination of their midpoint redox potentials. The cluster with higher midpoint potential (-290 +/- 20 mV) was labeled Fe-S center I and the other with lower potential (-340 +/- 20 mV), Fe-S center II. Both reduced clusters show atypical magnetic hyperfine coupling constants, suggesting structural differences from the clusters of bacterial ferredoxins. Also, an unusually broad EPR signal, labeled Fe-S signal B', extending from approximately 150 to approximately 450 mT was observed concomitantly with the reduction of the [4Fe-4S] clusters. The following two EPR signals observed at the weak-field region were tentatively attributed to the reduced [3Fe-4S] cluster: (i) a signal with crossover point at g approximately 12, labeled the g = 12 signal, and (ii) a broad signal at the very weak-field region (approximately 3 mT), labeled the Fe-S signal B. The midpoint redox potential associated with the appearance of the g = 12 signal was determined to be -70 +/- 10 mV. At potentials below -250 mV, the g = 12 signal began to decrease in intensity, and simultaneously, the Fe-S signal B appeared. The transformation of the g = 12 signal into the Fe-S signal B was found to parallel the reduction of the two [4Fe-4S] clusters indicating that the [3Fe-4S]o cluster is sensitive to the redox state of the [4Fe-4S] clusters. Detailed redox profiles for the previously reported Ni-signal C and the g = 2.21 signal were obtained in this study, and evidence was found to indicate that these two signals represent two different oxidation states of the enzyme. Finally, the mechanistic implications of our results are discussed.  相似文献   

13.
Conclusive evidence is presented for an S = 1/2 spincoupled pair of high spin ferric and ferrous ions in the major reaction product of sulfide with the met form of the non-heme iron oxygen-carrying protein hemerythrin. Evidence for an analogous selenide derivative is also reported. M?ssbauer and EPR spectroscopy establish (a) the charge and spin states of the individual iron atoms in sulfidehemerythrin as Fe(III), S = 5/2, and Fe(II), S = 2, and (b) the existence of an antiferromagnetic exchange interaction that couples the two spins to a resultant spin S = 1/2. The combined M?ssbauer and EPR data confirm the correctness of the formulation first proposed for semi-methemerythrin by Harrington, P.C., de Waal, D.J.A., and Wilkins, R.G. ((1978) Arch. Biochem. Biophys. 191, 444-451) and furthermore show that a majority of the iron centers in the protein can be stabilized at this oxidation level. The results also demonstrate a new route to semi-methemerythrin. A titration of methemerythrin with selenide indicates that this derivative forms by a two step process consisting of first, reduction to the semi-met oxidation level by selenide and second, binding of selenide to either one or both irons.  相似文献   

14.
 The isotropic hyperfine couplings of cysteine β-protons in iron-sulfur clusters of proteins provide information about the structure and conformation of the clusters if their magnetic resonance peaks can be resolved and assigned. The application of two-dimensional ESEEM (HYSCORE) spectroscopy to the reduced [2Fe-2S] cluster in ferredoxin from red marine algae Porfira umbilicalis is described. After deuterium substitution of the exchangeable protons, highly-resolved, orientationally-selected HYSCORE spectra show cross-peaks from strongly coupled, nonexchangeable protons. When cross-peaks from all the HYSCORE spectra are linearized and transformed to a common nuclear Zeeman frequency, they fall along five straight lines. Four of these sets of peaks are assigned to β-protons of the cysteine ligands. The isotropic and anisotropic hyperfine couplings for these protons are extracted from the slopes and intercepts of these lines. Two rescaling procedures are examined for the conversion of the experimentally measured isotropic couplings from different irons in [2Fe-2S] and [4Fe-4S] clusters. The couplings from P. umbilicalis appear to fit the same empirical dependence on Fe-S-C-H dihedral angle as do the couplings from a [4Fe-4S] model cluster. A method to assign protons for proteins of unknown structure is proposed that yields the correct assignment as derived from the crystal structure of the highly homologous protein from Spirulina platensis. The conformations of the cysteines in the reduced protein, derived without any adjustable parameters from this procedure and the empirical functions, are consistent with those reported for the latest refinement of the crystal structure of the oxidized protein. Received: 24 September 1997 / Accepted: 28 October 1997  相似文献   

15.
Recently developed theoretical methods to predict EPR and M?ssbauer parameters open the way for close interactions between theorists and experimentalists to elucidate the geometric and electronic structures of metalloenzymes and model complexes and to obtain insight into their reactive properties. Spectral calculations (g-values, hyperfine couplings, zero-field splittings, isomer shifts and quadrupole splittings) are also a means to validate theoretical approaches and therefore complement the prediction of geometries, reaction energies and transition states.  相似文献   

16.
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) from Pseudomonas aeruginosa has been investigated by EPR and M?ssbauer spectroscopy. Low temperature M?ssbauer data on the native enzyme (Fe3+, S = 5/2) yields a hyperfine field Hsat=-525 kG at the nucleus. This observation is inconsistent with earlier suggestions, based on EPR data of a rubredoxin-like ligand environment around the iron, i.e. a tetrahedral sulfur coordination. Likewise, the dithionite-reduced enzyme has M?ssbauer parameters unlike those of reduced rubredoxin. We conclude that the iron atoms are in a previously unrecognized environment. The ternary complex of the enzyme with 3,4-dihydroxyphenylpropionate and O2 yields EPR signals at g = 6.7 and g = 5.3; these signals result from an excited state Kramers doublet. The kinetics of the disappearance of these signals parallels product formation and the decay of the ternary complex as observed in the optical spectrum. The M?ssbauer and EPR data on the ternary complex establish the iron atoms to be a high-spin ferric state characterized by a large and negative zero-field splitting, D = approximately -2 cm-1.  相似文献   

17.
18.
4 S4]3 +  and the reduced [Fe4S4]2 +  clusters in the high-potential iron protein I from Ectothiorhodospira halophila were measured in a temperature range from 5 K to 240 K. EPR measurements and 57Fe electron-nuclear double resonance (ENDOR) experiments were carried out with the oxidized protein. In the oxidized state the cluster has a net spin S = 1/2 and is paramagnetic. As common in [Fe4S4]3 +  clusters, the M?ssbauer spectrum was simulated with two species contributing equally to the absorption area: two Fe3 +  atoms couple to the “ferric-ferric” pair, and one Fe2 +  and one Fe3 +  atom give the “ferric-ferrous pair”. For the simulation of the M?ssbauer spectrum, g-values were taken from EPR measurements. A-tensor components were determined by 57Fe ENDOR experiments that turned out to be a necessary source of estimating parameters independently. In order to obtain a detailed agreement of M?ssbauer and ENDOR data, electronic relaxation has to be taken into account. Relaxing the symmetry condition in a way that the electric field gradient tensor does not coincide with g- and A-tensors yielded an even better agreement of experimental and theoretical M?ssbauer spectra. Spin-spin and spin-lattice relaxation times were estimated by pulsed EPR; the former turned out to be the dominating mechanism at T = 5 K. Relaxation times measured by pulsed EPR and obtained from the M?ssbauer fit were compared and yield nearly identical values. The reduced cluster has one additional electron and has a diamagnetic (S = 0) ground state. All the four irons are indistinguishable in the M?ssbauer spectrum, indicating a mixed-valence state of Fe2.5 +  for each. Received: 15 February 1999 / Accepted: 31 August 1999  相似文献   

19.
20.
Protocatechuate 4,5-dioxygenase from Pseudomonas testosteroni has been purified to homogeneity and crystallized. The iron containing, extradiol dioxygenase is shown to be composed of two subunit types (alpha, Mr = 17,700 and beta, Mr = 33,800) in a 1:1 ratio; such a composition has not been observed for other extradiol dioxygenases. The 4.2 K M?ssbauer spectrum of native protocatechuate 4,5-dioxygenase prepared from cells grown in 57Fe-enriched media consists of a doublet with quadrupole splitting, delta EQ = 2.22 mm/s, and isomer shift delta Fe = 1.28 mm/s, demonstrating a high spin Fe2+ site. These parameters, and the temperature dependence of delta EQ, are unique among enzymes but are strikingly similar to those reported for the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26, suggesting very similar ligand environments. The Fe2+ of protocatechuate 4,5-dioxygenase can be oxidized, for instance by H2O2, to yield high spin Fe3+ with EPR g values around g = 6 (and g = 4.3). In the oxidized state, protocatechuate 4,5-dioxygenase is inactive; the iron, however, can be rereduced by ascorbate to yield active enzyme. Our data suggest that protocatechuate binds to Fe2+; the spectra indicate that the ligand binding is heterogenous. The M?ssbauer spectra observed here are fundamentally different from those reported earlier (Zabinski, R., Münck, E., Champion, P., and Wood, J. M. (1972) Biochemistry 11, 3212-3219). The spectra of the earlier (reconstituted) preparations, which had substantially lower specific activities, probably reflect adventitiously bound Fe3+. We discuss here how adventitiously bound iron can be identified and removed. The Fe2+ which is present in native protocatechuate 4,5-dioxygenase and its complexes with substrates and inhibitors reacts quantitatively with nitric oxide to produce a species with electronic spin S = 3/2. The EPR and M?ssbauer spectra of these complexes compare favorably with EDTA . Fe(II) . NO. We have studied the latter complex extensively and have analyzed the M?ssbauer spectra with an S = 3/2 spin Hamiltonian. EPR spectra show that protocatechuate 4,5-dioxygenase-NO complexes with substrates or inhibitors are heterogeneous and consist of several well defined subspecies. The data show that NO, and presumably also O2, has access to the active site Fe2+ in the enzyme-substrate complex. The use of EPR-detectable NO complexes as a rapid and sensitive tool for the study of the EPR silent active site iron of extradiol dioxygenases is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号