首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spontaneous mutant of Pseudomonas stutzeri strain KC lacked the carbon tetrachloride (CCl4) transformation ability of wild-type KC. Analysis of restriction digests separated by pulsed-field gel electrophoresis (PFGE) indicated that the mutant strain CTN1 differed from strain KC by deletion of approximately 170 kb of chromosomal DNA. CTN1 did not produce pyridine-2,6-bis(thiocarboxylic acid) (PDTC), the agent determined to be responsible for CCl4 dechlorination in cultures of strain KC. Cosmids from a genomic library of strain KC containing DNA from within the deleted region were identified by hybridization with a 148 kb genomic Spe I fragment absent in strain CTN1. Several cosmids identified in this manner were further screened for complementation of the PDTC biosynthesis-negative (Pdt) phenotype. One cosmid (pT31) complemented the Pdt phenotype of CTN1 and conferred CCl4 transformation activity and PDTC production upon other pseudomonads. Southern analysis showed that none of three other P. stutzeri strains representing three genomovars contained DNA that would hybridize with the 25 746 bp insert of pT31. Transposon mutagenesis of pT31 identified open reading frames (ORFs) whose disruption affected the ability to make PDTC in the strain CTN1 background. These data describe the pdt locus of strain KC as residing in a non-essential region of the chromosome subject to spontaneous deletion. The pdt locus is necessary for PDTC biosynthesis in strain KC and is sufficient for PDTC biosynthesis by other pseudomonads but is not a common feature of P. stutzeri strains.  相似文献   

2.
Pseudomonas sp. strain KC was grown on a medium with a low content of transition metals in order to examine the conditions for carbon tetrachloride (CT) transformation. Several carbon sources, including acetate, glucose, glycerol, and glutamate, were able to support CT transformation. The chelators 2,2'-dipyridyl and 1,10-phenanthroline stimulated CT transformation in a rich medium that otherwise did not support this activity. Low (< 10 microM) additions of dissolved iron(II), iron(III), and cobalt(II), as well as an insoluble iron(III) compound, ferric oxyhydroxide, inhibited CT transformation. The addition of 50 microM iron to actively growing cultures resulted in delayed inhibition of CT transformation. CT transformation was seen in aerobic cultures of KC, but with reduced efficiency compared with denitrifying cultures. Inhibition of CT transformation by iron was also seen in aerobically grown cultures. Optimal conditions were used in searching for effective CT transformation activity among denitrifying enrichments grown from samples of aquifer material. No activity comparable to that of Pseudomonas sp. strain KC was found among 16 samples tested.  相似文献   

3.
Previous research has established that Pseudomonas sp. strain KC rapidly transforms carbon tetrachloride (CT) to carbon dioxide (45 to 55%), a nonvolatile fraction (45 to 55%), and a cell-associated fraction ((equiv)5%) under denitrifying, iron-limited conditions. The present study provides additional characterization of the nonvolatile fraction, demonstrates that electron transfer plays a role in the transformation, and establishes the importance of both extracellular and intracellular factors. Experiments with (sup14)C-labeled CT indicate that more than one nonvolatile product is produced during CT transformation by strain KC. One of these products, accounting for about 20% of the [(sup14)C]CT transformed, was identified as formate on the basis of its elution time from an ion-exchange column, its boiling point, and its conversion to (sup14)CO(inf2) when incubated with formate dehydrogenase. Production of formate requires transfer of two electrons to the CT molecule. The role of electron transfer was also supported by experiments demonstrating that stationary-phase cells that do not transform CT can be stimulated to transform CT when supplemented with acetate (electron donor), nitrate (electron acceptor), or a protonophore (carbonyl cyanide m-chlorophenylhydrazone). The location of transformation activity was also evaluated. By themselves, washed cells did not transform CT to a significant degree. Occasionally, CT transformation was observed by cell-free culture supernatant, but this activity was not reliable. Rapid and reliable CT transformation was only obtained when washed whole cells were reconstituted with culture supernatant, indicating that both extracellular and intracellular factors are normally required for CT transformation. Fractionation of culture supernatant by ultrafiltration established that the extracellular factor or factors are small, with an apparent molecular mass of less than 500 Da. The extracellular factor or factors were stable after lyophilization to powder and were extractable with acetone. Addition of micromolar levels of iron inhibited CT transformation in whole cultures, but the level of iron needed to inhibit CT transformation was over 100-fold higher for washed cells reconstituted with a 10,000-Da supernatant filtrate. Thus, the inhibitory effects of iron are exacerbated by a supernatant factor or factors with a molecular mass greater than 10,000 Da.  相似文献   

4.
Previously, we described the generation and initial characterization of four Tn5 mutants of Pseudomonas stutzeri strain KC with impaired ability to degrade carbon tetrachloride (Sepúlveda-Torres et al., 1999). In this study, we show cloning and sequencing of an 8.3 kbp region in which all four transposons were located. This fragment encodes eight potential genes and is located in the central part of the 25 kbp fragment recently identified by Lewis et al. (2000) and shown by them to be sufficient to confer carbon tetrachloride transformation capability upon other pseudomonads. The four transposon insertion mutants mapped in ORF's F and I designated by Lewis et al. (2000). This is consistent with the results by Lewis et al. (2000) that orfFis required for carbon tetrachloride degradation. We further established that orfl is required for CCl4 degradation since the three mutants in this ORF were unable to degrade carbon tetrachloride. We present our analysis of the gene and protein sequences from the 8.3 kbp region and propose a tentative model for the role of different genes in the synthesis and activity of pyridine-2,6-bis(thiocarboxylate) (PDTC), the secreted factor responsible for carbon tetrachloride dechlorination. We also found a putative promoter that overlaps with a Fur-box-like sequence in the region upstream of mutated genes. To test this putative promoter region and Fur-box, we generated and ligated DNA fragments containing wild-type and mutant Fur-boxes to a lacZ reporter. The wild-type fragment showed promoter activity that is regulated by the concentration of iron in the medium. Finally, we screened a selection of Pseudomonas strains, including P. putida DSMZ 3601--a strain known to produce PDTC--for the presence of the genes characterized in this study. None of the strains tested positive, suggesting that Pseudomonas stutzeri strain KC may possess a distinct biosynthetic pathway for PDTC production.  相似文献   

5.
Limitations in amino acid supply have been recognized as a substantial problem in cell-free protein synthesis reactions. Although enzymatic inhibitors and fed-batch techniques have been beneficial, the most robust way to stabilize amino acids is to remove the responsible enzymatic activities by genetically modifying the source strain used for cell extract preparation. Previous work showed this was possible for arginine, serine, and tryptophan, but cysteine degradation remained a major limitation in obtaining high protein synthesis yields. Through radiolabel techniques, we confirmed that cysteine degradation was caused by the activity of glutamate-cysteine ligase (gene gshA) in the cell extract. Next, we created Escherichia coli strain KC6 that combines a gshA deletion with previously described deletions for arginine, serine, and tryptophan stabilization. Strain KC6 grows well, and active cell extract can be produced from it for cell-free protein synthesis reactions. The extract from strain KC6 maintains stable amino acid concentrations of all 20 amino acids in a 3-h batch reaction. Yields for three different proteins improved 75-250% relative to cell-free expression using the control extract.  相似文献   

6.
Under denitrifying conditions, Pseudomonas sp. strain KC transforms carbon tetrachloride (CT) to carbon dioxide via a complex but as yet undetermined mechanism. Transformation rates were first order with respect to CT concentration over the CT concentration range examined (0 to 100 micrograms/liter) and proportional to protein concentration, giving pseudo-second-order kinetics overall. Addition of ferric iron (1 to 20 microM) to an actively transforming culture inhibited CT transformation, and the degree of inhibition increased with increasing iron concentration. By removing iron from the trace metals solution or by removing iron-containing precipitate from the growth medium, higher second-order rate coefficients were obtained. Copper also plays a role in CT transformation. Copper was toxic at neutral pH. By adjusting the medium pH to 8.2, soluble iron and copper levels decreased as a precipitate formed, and CT transformation rates increased. However, cultures grown at high pH without any added trace copper (1 microM) exhibited slower growth rates and greatly reduced rates of CT transformation, indicating that copper is required for CT transformation. The use of pH adjustment to decrease iron solubility, to avoid copper toxicity, and to provide a selective advantage for strain KC was evaluated by using soil slurries and groundwater containing high levels of iron. In samples adjusted to pH 8.2 and inoculated with strain KC, CT disappeared rapidly in the absence or presence of acetate or nitrate supplements. CT did not disappear in pH-adjusted controls that were not inoculated with strain KC.  相似文献   

7.
Both in vivo and in vitro 31P-NMR spectroscopy were used to demonstrate metabolic changes in rat liver as a function of time after exposure to either carbon tetrachloride (CCl4) or bromotrichloromethane (BrCCl3). The inorganic phosphate resonance, measured in vivo, moves upfield, which is associated with a decrease in cytosolic pH over a 12 or 20 h period (for BrCCl3 or CCl4, respectively). Intoxication by CCl4 or BrCCl3 causes an intracellular acidosis to pH 7.05 or 6.82 (+/- 0.05), respectively. Also, it has been found that halocarbon exposure increases the amounts of phosphomonoesters (PME) detected. High resolution in vitro 31P-NMR spectroscopy studies of perchloric acid extracts of CCl4-treated rat livers indicated a significant increase in the height of the phosphocholine resonance in the PME region 4-5 h after CCl4 exposure.  相似文献   

8.
A novel haloarchaeal strain, Haloarcula sp. strain D1, grew aerobically on 4-hydroxybenzoic acid (4HBA) as a sole carbon and energy source and is the first member of the domain Archaea reported to do so. Unusually, D1 metabolized 4HBA via gentisic acid rather than via protocatechuic acid, hydroquinone, or catechol. Gentisate was detected in 4HBA-grown cultures, and gentisate 1,2-dioxygenase activity was induced in 4HBA-grown cells. Stoichiometric accumulation of gentisate from 4HBA was demonstrated in 4HBA-grown cell suspensions containing 2,2'-dipyridyl (which strongly inhibits gentisate 1,2-dioxygenase). To establish whether initial 1-hydroxylation of 4HBA with concomitant 1,2-carboxyl group migration to yield gentisate occurred, 2,6-dideutero-4HBA was synthesized and used as a substrate. Deuterated gentisate was recovered from cell suspensions and identified as 3-deutero-gentisate, using gas chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy. This structural isomer would be expected only if a 1,2-carboxyl group migration had taken place, and it provides compelling evidence that the 4HBA pathway in Haloarcula sp. strain D1 involves a hydroxylation-induced intramolecular migration. To our knowledge, this is the first report of a pathway which involves such a transformation (called an NIH shift) in the domain ARCHAEA:  相似文献   

9.
During the last decade, an increasing number of bovine adenoviruses have been isolated from calves suffering from more, or less, well-defined syndromes. These have consisted of respiratory disorders of varying severity, enteritis, or a combination of both, which in typical cases has been termed “pneumo-enteritis”. These investigations have been reviewed by Darbyshire (1968). Wilcox (1969) isolated adenoviruses from kerato-conjunctivitis (KC) in cattle. Furthermore, strains have been isolated from apparently healthy animals (Darbyshire 1968), and from tissue cultures prepared from various organs from calves such as kidneys (Scho- pov et al. 1968), and testes (Rondhuis 1968, Bartha & Csontos 1969). At the present time 9 serotypes of bovine adenoviruses exist, as determined by neutralization tests, and these have recently been reviewed by Guenov et al. (1970). However, several strains, some from cases of pneumonia (Cole 1970, Lupini et al. 1970) and others from KC (Wilcox 1969) remain to be typed and compared with the known prototypes, thereby enabling possible new serotypes to be identified. So far, serotypes 1 and 2 (Darbyshire et al. 1969), serotype 3 (Darbyshire et al. 1966) and serotypes 4 and 5 (Aldasy et al. 1965) have been shown to cause pneumo-enteritis, and serotype 6 (Rondhuis 1970) a mild respiratory disease in experimentally infected calves. Similarly, KC has been produced experimentally by Wilcox (1970), while the pathogenicity for experimental animals of the other typed and untyped strains remains to be investigated.  相似文献   

10.
The KC gene is a cell cycle-dependent competence gene originally identified in platelet-derived growth factor-stimulated BALB/c-3T3 cells. This gene is also induced in murine peritoneal macrophages in response to activation stimuli. We have examined the expression of the KC gene in cultured porcine aortic endothelial cells following treatment with bacterial lipopolysaccharide (LPS) as a first step in defining the early molecular events involved in endothelial cell stimulation by physiologically relevant modulators. LPS markedly elevated the steady-state level of KC mRNA in confluent endothelial cells; maximum induction of KC occurred in the cells following exposure to 10 ng/ml LPS for 2 h. LPS did not increase the growth fraction of the cells, nor was the KC mRNA level changed in dense endothelial cells stimulated to enter the cell cycle with epidermal growth factor. However, KC mRNA expression was elevated by addition of serum to starved, subconfluent endothelial cell cultures. Treatment of endothelial cells with phorbol myristate acetate (PMA) and 1-oleoyl-2-acetyl-glycerol (OAG) also induced KC gene expression. A maximum response was obtained with 10 nM PMA, the effect decreasing with higher levels of the phorbol ester. The calcium ionophore A23187 exhibited little stimulatory activity alone; however, the ionophore did cause a doubling in the PMA-stimulated KC expression. The increased expression of KC induced by LPS and PMA was inhibited by the presence of 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H7), a protein kinase C inhibitor, but not by HA1004 (an H7 analogue with little protein kinase C inhibitory activity). No cytotoxicity was observed in inhibitor or LPS-treated endothelial cell cultures. These results demonstrate that KC gene expression is stimulated by LPS in vascular endothelial cells in a proliferation-independent process. Second, unlike LPS-induced KC expression in macrophages and platelet-derived growth factor-induced KC expression in 3T3 cells, LPS induction of KC in endothelial cells appears to require activation of protein kinase C.  相似文献   

11.
We have identified two types of siderophores produced by Pseudomonas, one of which has never before been found in the genus. Twelve strains of Pseudomonas stutzeri belonging to genomovars 1, 2, 3, 4, 5, and 9 produced proferrioxamines, the hydroxamate-type siderophores. Pseudomonas stutzeri JM 300 (genomovar 7) and DSM 50238 (genomovar 8) and Pseudomonas balearica DSM 6082 produced amonabactins, catecholate-type siderophores. The major proferrioxamines detected were the cyclic proferrioxamines E and D2. Pseudomonas stutzeri KC also produced cyclic (X1 and X2) and linear (G1 and G2a-c) proferrioxamines. Our data indicate that the catecholate-type siderophores belong to amonabactins P 750, P 693, T 789, and T 732. A mutant of P. stutzeri KC (strain CTN1) that no longer produced the secondary siderophore pyridine-2,6-dithiocarboxylic acid continued to produce all other siderophores in its normal spectrum. Siderophore profiles suggest that strain KC (genomovar 9) belongs to the proferrioxamine-producing P. stuzeri. Moreover, a putative ferrioxamine outer membrane receptor gene foxA was identified in strain KC, and colony hybridization showed the presence of homologous receptor genes in all P. stutzeri and P. balearica strains tested.  相似文献   

12.
13.
A denitrifying Pseudomonas sp. (strain KC) capable of transforming carbon tetrachloride (CT) was isolated from groundwater aquifer solids. Major products of the transformation of 14C-labeled CT by Pseudomonas strain KC under denitrification conditions were 14CO2 and an unidentified water-soluble fraction. Little or no chloroform was produced. Addition of dissolved trace metals, notably, ferrous iron and cobalt, to the growth medium appeared to enhance growth of Pseudomonas strain KC while inhibiting transformation of CT. It is hypothesized that transformation of CT by this organism is associated with the mechanism of trace-metal scavenging.  相似文献   

14.
Recent attention has focused on the role keratinocytes (KC) may play in the induction of T cell-mediated inflammatory responses in skin, particularly because KC, when activated by immunologic stimuli, express MHC class II Ag and secrete immunomodulatory cytokines. We tested the capacity of normal human KC that were stimulated with PMA to induce PBMC proliferation. PMA-treated, but not untreated, KC induced proliferation of allogeneic as well as autologous PBMC; in addition, when purified CD4+ or CD8+ T cells were used as responders, each subset proliferated. PBMC proliferation was not due to direct action of PMA on PBMC, nor to contamination of KC cultures with Langerhans cells (LC) or dermal APC. Pretreatment with different protein kinase C inhibitors abrogated the capacity of PMA-stimulated KC to induce proliferation. Paraformaldehyde-fixed PMA-KC stimulated PBMC proliferation, whereas supernatants from PMA-treated KC failed to do so, indicating that a membrane-associated activity on PMA-KC contributes to the induction of PBMC proliferation. PMA induced intercellular adhesion molecule-1 (ICAM-1) expression on KC; furthermore, mAb against ICAM-1 or against its ligand lymphocyte function-associated Ag (LFA-1) (CD11a/CD18) significantly, but incompletely, reduced the stimulatory capacity of PMA-treated KC, indicating that ICAM-1/LFA-1 interaction contributed to PBMC proliferation. IFN-gamma or TNF-alpha also induced ICAM-1 on KC, but these KC failed to stimulate proliferation, suggesting that PMA induces additional signals from KC, which act in concert with ICAM-1 to promote proliferation. Finally, mAb against HLA-ABC or HLA-DR did not inhibit proliferation. We conclude that PMA can activate KC to stimulate T cell proliferation in a MHC-independent fashion. This activation is mediated by protein kinase C and in part by the induction of ICAM-1 expression on KC.  相似文献   

15.
A denitrifying Pseudomonas sp. (strain KC) capable of transforming carbon tetrachloride (CT) was isolated from groundwater aquifer solids. Major products of the transformation of 14C-labeled CT by Pseudomonas strain KC under denitrification conditions were 14CO2 and an unidentified water-soluble fraction. Little or no chloroform was produced. Addition of dissolved trace metals, notably, ferrous iron and cobalt, to the growth medium appeared to enhance growth of Pseudomonas strain KC while inhibiting transformation of CT. It is hypothesized that transformation of CT by this organism is associated with the mechanism of trace-metal scavenging.  相似文献   

16.
Two bacterial species isolated using enrichment culture techniques from the topsoil of a main refuse dumpsite in Nigeria were assessed for their dehalogenation potentials. The bacterial isolates were identified as belonging to the Bacillus and Pseudomonas genera. Axenic cultures of the isolates utilized monochloroacetic acid (MCA), trichloroacetic acid (TCA), trichloromethane (CHCl3) and tetrachloromethane (CCl4) as the sole source of carbon for growth up to a final substrate concentration of 0.1% (w/v). The mean generation times of the isolates in all the growth media ranged significantly (P<0.05) from 2.41 to 10.04 h and were generally higher than that observed in glucose medium (1.46–1.51 h). The numbers of the chloride atoms in the different organochlorides were negatively correlated with the ability of the organisms to degrade the compounds. Dehalogenase specific activities of the cell-mediated cultures ranged from 0.1 to 0.96 μg ml–1 chloride release (mg protein)–1 h–1 and were significantly (P <0.05) higher than that of the cell-free extract [0.09–0.8 μg ml–1 chloride release (mg protein)–1 h–1]. The optimal pH of the dehalogenase activity was found to be 8.0, and the optimal temperature was between 30 and 35 °C. Electronic Publication  相似文献   

17.
Pseudomonas pseudoalcaligenes JS52 grows on nitrobenzene via partial reduction of the nitro group and enzymatic rearrangement of the resultant hydroxylamine. Cells and cell extracts of nitrobenzene-grown JS52 catalyzed the transient formation of 4-hydroxylamino-2,6-dinitrotoluene (4HADNT), 4-amino-2,6-dinitrotoluene (4ADNT), and four previously unidentified metabolites from 2,4,6-trinitrotoluene (TNT). Two of the novel metabolites were identified by liquid chromatography/mass spectrometry and (sup1)H-nuclear magnetic resonance spectroscopy as 2,4-dihydroxylamino-6-nitrotoluene (DHANT) and 2-hydroxylamino-4-amino-6-nitrotoluene (2HA4ANT). A polar yellow metabolite also accumulated during transformation of TNT by cells and cell extracts. Under anaerobic conditions, extracts of strain JS52 did not catalyze the production of the yellow metabolite or release nitrite from TNT; moreover, DHANT and 2HA4ANT accumulated under anaerobic conditions, which indicated that their further metabolism was oxygen dependent. Small amounts of nitrite were released during transformation of TNT by strain JS52. Sustained transformation of TNT by cells required nitrobenzene, which indicated that TNT transformation does not provide energy. Transformation of TNT catalyzed by enzymes in cell extracts required NADPH. Transformation experiments with (sup14)C-TNT indicated that TNT was not mineralized; however, carbon derived from TNT became associated with cells. Nitrobenzene nitroreductase purified from strain JS52 transformed TNT to DHANT via 4HADNT, which indicated that the nitroreductase could catalyze the first two steps in the transformation of TNT. The unusual ability of the nitrobenzene nitroreductase to catalyze the stoichiometric reduction of aromatic nitro compounds to the corresponding hydroxylamine provides the basis for the novel pathway for metabolism of TNT.  相似文献   

18.
Previous work has established the marked potentiation of CCl4 hepatoxicity by prior exposure to chlordecone (CD). This study was conducted to determine if prior exposure to CD results in enhancement of CCl4-induced destruction of the hepatic microsomal mixed-function oxygenase (MFO) system. Male Sprague-Dawley rats received a single oral dose of CD (10 mg/kg) or corn oil vehicle alone (1 ml/kg) 24 hr prior to a single ip injection of CCl4 (0-100 microliter/kg). Mirex (M; 10 mg/kg) and phenobarbital (PB; 80 mg/kg/day for two days) were used as negative and positive controls respectively for the potentiation of CCl4 hepatotoxicity. Hepatotoxicity was evaluated 24 hrs after CCl4 administration by elevations of three serum enzymes (GPT, GOT, and ICD). The key hepatic microsomal MFO parameters measured were microsomal protein, cytochrome P-450 content, glucose-6-phosphatase (G-6-Pase), and aminopyrine demethylase (APD). As previously demonstrated using a subchronic dietary pretreatment protocol, CD potentiated CCl4 hepatotoxicity over a range of CCl4 doses to a greater extent than PB or M, as judged by elevations in serum enzymes. PB caused the greatest increase in total P-450 content and the greatest increase in CCl4-mediated destruction of microsomal protein and APD activity. M caused the least destruction of total hepatic cytochrome P-450, despite the same level of cytochrome P-450 as in the PB group. CD treatment caused the greatest decrease in G-6-Pase activity in comparison to PB or M pretreatments and a similar degree of P-450 destruction as observed with the PB group. These findings suggest that in general, CCl4-induced destruction of hepatic MFO parameters measured in this study is disproportional to the known degree of potentiated hepatotoxicity by the pretreatments and does not accurately reflect the potentiation of CCl4 hepatotoxicity by CD.  相似文献   

19.
Abstract Fermentation of chitin by mixed cultures of the chitinolytic Clostridium sp. strain 9.1 and various non-chitinolytic bacteria proceeded up to eight times faster than in pure cultures. The addition of spent media of such mixed cultures also resulted in a marked stimulation of chitinolysis in pure cultures of strain 9.1. Pure cultures fermented chitin much faster if supplemented with either spent media or cell-free extracts of the non-chitinolytic bacteria. The compound responsible for this stimulation was thermostable (10 min at 85° C) and could not be removed by passage over Sephadex G-25, indicating a molecular weight of more than 1500. The heat stable enzyme thioredoxin (from Saccharomyces cerevisiae ) was shown to stimulate the chitin fermentation in a similar manner. Alkylation of this enzyme reduced its stimulatory action significantly indicating its (di)thiol: disulfide interchanging activity.
It is hypothesized that essential sulfhydryl groups in the chitinolytic system of strain 9.1 are reduced by thioredoxin and/or similar thiol: disulfide transhydrogenases present in the cell-free extracts and spent media, resulting in an acceleration of chitin hydrolysis and fermentation. This stimulation may thus be the result of a new type of interspecies interaction in anaerobic mixed cultures.  相似文献   

20.
Alterations in liver mitochondria as consequence of rat poisoning with carbon tetrachloride (CCl4) have been reported over many years, but the mechanisms responsible for causing such damage are still largely unknown. Isolated rat liver mitochondria incubated under hypoxic conditions with succinate and ADP were found able to activate CCl4 to a free-radical species identified as trichloromethyl free radical (CCl3) by e.s.r. spectroscopy coupled with the spin-trapping technique. The incubation of mitochondria in air decreased free-radical production, indicating that a reductive reaction was involved in the activation of CCl4. However, in contrast with liver microsomes (microsomal fractions), mitochondria did not require the presence of NADPH, and the process was not significantly influenced by inhibitors of cytochrome P-450. The addition of inhibitors of the respiratory chain such as antimycin A and KCN decreased free-radical formation by only 30%, whereas rotenone displayed a greater effect (approx. 84% inhibition), but only when preincubated for 15 min with mitochondria not supplemented with succinate. These findings suggest that the mitochondrial electron-transport chain is responsible for the activation of CCl4. A conjugated-diene band was observed in the lipids extracted from mitochondria incubated with CCl4 under anaerobic conditions, indicating that stimulation of lipid peroxidation was occurring as a result of the formation of free-radical species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号