首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.  相似文献   

2.
BackgroundAntimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus.MethodsA physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations.ResultsRQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces.ConclusionsRQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application.General significanceThese results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.  相似文献   

3.
By using an amyloid sequence pattern, here we have identified putative six-residue amyloidogenic stretches in several relevant amyloid proteins. Hexapeptides synthesized on the bases of the sequence stretches matching the pattern have been shown to form amyloid fibrils in vitro. As larger pathological peptides such as Aβ1-42 do, these short amyloid peptides form heterogeneous mixtures of small aggregates that induce cell death in PC12 cells and primary hippocampal neurons. Toxic mixtures of small aggregates from these hexapeptides bind to cell membranes and can be further internalized, as also observed for natural amyloid proteins. In neurons, toxic aggregates obtained from the full length Aβ1-42 amyloid peptide or their amyloid stretch Aβ16-21 peptide preferentially localize in synapses, leading to the re-organization of the underlying actin cytoskeleton. This process does not involve stereospecific interactions between membrane and toxic species as D-sequences are as toxic as L ones, suggesting that is not receptor mediated. Based on these results, we propose here that regardless of polypeptide sequence, length and amino acid chirality, amyloid prefibrillar aggregates exert their cytotoxic effect through a common cell death mechanism related to a particular quaternary structure. The degree of toxicity of these species seems to depend, however, on cell membrane composition.  相似文献   

4.
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin β13. It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The VH CDR3 peptide from mAb A4 and VL CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.  相似文献   

5.
Background aimsTumor antigen-specific cytotoxic T lymphocytes (CTL) have been used in the treatment of human cancer, including leukemia. Several studies have established PR1 peptide, an HLA-A2.1-restricted peptide derived from proteinase 3 (P3), as a human leukemia-associated antigen. PR1-specific CTL elicited in vitro from healthy donors have been shown to lyse P3-expressing AML cells from patients. We investigated whether PR1-CTL can be adoptively transferred into NOD/SCID mice to eliminate human leukemia cells.MethodsPR1-CTL were generated in bulk culture from peripheral blood mononuclear cells (PBMC) stimulated with autologous dendritic cells. Human acute myeloid leukemia (AML) patient samples were injected and engrafted in murine bone marrow at 2 weeks post-transfer.ResultsFollowing adoptive transfer, bone marrow aspirate from mice that received AML alone had 72–88% blasts in a hypercellular marrow, whereas mice that received AML plus PR1-CTL co-infusion had normal hematopoietic elements and only 3–18% blasts in a hypocellular marrow. The PR1-CTL persisted in the bone marrow and liver and maintained a CD45RA? CD28+ effector phenotype.ConclusionsWe found that adoptive transfer of PR1-CTL generated in vitro is associated with reduced AML cells in NOD/SCID mice. PR1-CTL can migrate to the sites of disease and maintain their capacity to kill the AML cells. The surface phenotype of PR1-CTL was consistent with their trafficking pattern in both vascular and end-organ tissues.  相似文献   

6.
J. Dissing 《Biochemical genetics》1987,25(11-12):901-918
An immunological study was performed on human red cell acid phosphatase (ACP1) isozymes encoded by different alleles, each of which is expressed as an electrophoretically fast (f) isozyme and a slow (s) isozyme. These isozymes reacted as two immunochemically different groups. Allele-specific reactions were not detected between either the f isozymes or the s isozymes. Quantitation of ACP1 isozymes in red cells by crossed immunoelectrophoresis revealed a phenotype-dependent variation in the concentration of isozyme protein. A simple gene dosage effect was indicated and the ordering of the ACP1 alleles (ACP1*A < ACP1*B < ACP1*C < ACP1*E) was identical to that found for enzyme activity levels. Also, an allele effect on the proportion between s and f isozymes (s/f) was observed; the ordering here was ACP1* B < ACP1*A < ACP1*, which is the same as that reported for the susceptibility to modulation with purines. These variations in isozyme protein levels appear to account for the phenotypic differences in the intensity of the isozyme bands, when activity-stained after electrophoresis, and in the red cell enzyme activity levels. Investigation of two carriers of a Null allele showed no evidence of an aberrant protein product, and half-normal concentrations of enzyme protein were observed in the red cells of these individuals.  相似文献   

7.
Although BMAP-28 is a potent cathelicidin-derived bovine antimicrobial peptide, its cytotoxic activity against the human and other mammalian cells is of concern for converting it into a novel antimicrobial drug. We have identified a short leucine and isoleucine zipper sequences at the N- and C-terminals of BMAP-28, respectively. To understand the possible role of these structural elements in BMAP-28, a number of alanine-substituted analogs were designed, synthesized and characterized along with the wild-type peptide. The substitution of amino acids at single or multiple ‘a’ position(s) of these structural motifs by alanine showed significant effects on the cytotoxic activity of the molecule on the human red blood cells (hRBCs) and 3T3 cells without showing much effects on their MIC values against the selected bacteria. BMAP-28 and all its analogs depolarized the Escherichia coli cells with almost equal efficacy. In contrast, the alanine-substituted analogs of BMAP-28 depolarized hRBCs much less efficiently than the parent molecule. Results further showed that BMAP-28 assembled appreciably onto the live E. coli and hRBC. However, the selected less toxic analogs of BMAP-28 although assembled as good as the parent molecule onto the live E. coli cells, their assembly onto the live mammalian hRBCs was much weaker as compared to that of the wild-type molecule. Looking at the remarkable similarity with the data presented in our previous work on melittin, it appears that probably the heptad repeat sequence possesses a general role in maintaining the cytotoxicity of the antimicrobial peptides against the mammalian cells and assembly therein.  相似文献   

8.
Archaeal protein trafficking is a poorly characterized process. While putative type I signal peptidase genes have been identified in sequenced genomes for many archaea, no biochemical data have been presented to confirm that the gene product possesses signal peptidase activity. In this study, the putative type I signal peptidase gene in Methanococcus voltae was cloned and overexpressed in Escherichia coli, the membranes of which were used as the enzyme source in an in vitro peptidase assay. A truncated, His-tagged form of the M. voltae S-layer protein was generated for use as the substrate to monitor the signal peptidase activity. With M. voltae membranes as the enzyme source, signal peptidase activity in vitro was optimal between 30 and 40°C; it was dependent on a low concentration of KCl or NaCl but was effective over a broad concentration range up to 1 M. Processing of the M. voltae S-layer protein at the predicted cleavage site (confirmed by N-terminal sequencing) was demonstrated with the overexpressed archaeal gene product. Although E. coli signal peptidase was able to correctly process the signal peptide during overexpression of the M. voltae S-layer protein in vivo, the contribution of the E. coli signal peptidase to cleavage of the substrate in the in vitro assay was minimal since E. coli membranes alone did not show significant activity towards the S-layer substrate in in vitro assays. In addition, when the peptidase assays were performed in 1 M NaCl (a previously reported inhibitory condition for E. coli signal peptidase I), efficient processing of the substrate was observed only when the E. coli membranes contained overexpressed M. voltae signal peptidase. This is the first proof of expressed type I signal peptidase activity from a specific archaeal gene product.  相似文献   

9.
BackgroundThe proteasome catalyzes the degradation of many mis-folded proteins, which are otherwise cytotoxic. There is interest in the discovery of proteasome agonists, but previous efforts to do so have been disappointing.MethodsThe cleavage of small fluorogenic peptides is used routinely as an assay to screen for proteasome modulators. We have developed follow-on assays that employ more physiologically relevant substrates.ResultsTo demonstrate the efficacy of this workflow, the NIH Clinical Collection (NCC) was screened. While many compounds stimulated proteasome-mediated proteolysis of the pro-fluorogenic peptide substrates, most failed to evince activity in assays with larger peptide or protein substrates. We also show that two molecules claimed previously to be proteasome agonists, oleuropein and betulinic acid, indeed accelerate hydrolysis of the fluorogenic substrate, but have no effect on the turnover of a mis-folded protein in vitro or in cellulo. However, two small molecules from the NCC, MK-866 and AM-404, stimulate the proteasome-mediated turnover of a mis-folded protein in living cells by 3- to 4-fold.ConclusionAssays that monitor the proteasome-mediated degradation of larger peptides and proteins can distinguish bona fide agonists from compounds only able to stimulate the cleavage of short, non-physiologically relevant peptides.General significanceA suite of assays has been established that allows the discovery of bona fide proteasome agonists. AM-404 and MK-866 can be useful tools for cell culture experiments, and can serve as scaffolds to generate more potent 20S stimulators.  相似文献   

10.
11.
BackgroundEnterocin CRL35 is a class IIa bacteriocin with anti-Listeria activity. Resistance to these peptides has been associated with either the downregulation of the receptor expression or changes in the membrane and cell walls. The scope of the present work was to characterize enterocin CRL35 resistant Listeria strains with MICs more than 10,000 times higher than the MIC of the WT sensitive strain.MethodsListeria monocytogenes INS7 resistant isolates R2 and R3 were characterized by 16S RNA gene sequencing and rep-PCR. Bacterial growth kinetic was studied in different culture media. Plasma membranes of sensitive and resistant bacteria were characterized by FTIR and Langmuir monolayer techniques.ResultsThe growth kinetic of the resistant isolates was slower as compared to the parental strain in TSB medium. Moreover, the resistant isolates barely grew in a glucose-based synthetic medium, suggesting that these cells had a major alteration in glucose transport. Resistant bacteria also had alterations in their cell wall and, most importantly, membrane lipids. In fact, even though enterocin CRL35 was able to bind to the membrane-water interface of both resistant and parental sensitive strains, this peptide was only able to get inserted into the latter membranes.ConclusionsThese results indicate that bacteriocin receptor is altered in combination with membrane structural modifications in enterocin CRL35-resistant L. monocytogenes strains.General significanceHighly enterocin CRL35-resistant isolates derived from Listeria monocytogenes INS7 have not only an impaired glucose transport but also display structural changes in the hydrophobic core of their plasma membranes.  相似文献   

12.
PurposeThe clinical efficacy of cancer peptide vaccine therapy is insufficient. To enhance the anti-tumor effect of peptide vaccine therapy, we combined this therapy with an anti-CD4 mAb (GK1.5), which is known to deplete CD4+ cells, including regulatory T cells (Tregs).MethodsTo determine the treatment schedule, the number of lymphocyte subsets in the peripheral blood of mice was traced by flow cytometry after administration of anti-CD4 mAb. The ovalbumin (OVA)257–264 peptide vaccine was injected intradermally and anti-CD4 mAb was administered intraperitoneally into C57BL/6 mice at different schedules. We evaluated the enhancement of OVA peptide-specific cytotoxic T lymphocyte (CTL) induction in the combination therapy using the ELISPOT assay, CD107a assay, and cytokine assay. We then examined the in vivo metastasis inhibitory effect by OVA peptide vaccine therapy in combination with anti-CD4 mAb against OVA-expressing thymoma (EG7) in a murine liver metastatic model.ResultsWe showed that peptide-specific CTL induction was enhanced by the peptide vaccine in combination with anti-CD4 mAb and that the optimized treatment schedule had the strongest induction effect of peptide-specific CTLs using an IFN-γ ELISPOT assay. We also confirmed that the CD107a+ cells secreted perforin and granzyme B and the amount of IL-2 and TNF produced by these CTLs increased when the peptide vaccine was combined with anti-CD4 mAb. Furthermore, metastasis was inhibited by peptide vaccines in combination with anti-CD4 mAb compared to peptide vaccine alone in a murine liver metastatic model.ConclusionThe use of anti-CD4 mAb in combination with the OVA peptide vaccine therapy increased the number of peptide-specific CTLs and showed a higher therapeutic effect against OVA-expressing tumors. The combination with anti-CD4 mAb may provide a new cancer vaccine strategy.  相似文献   

13.
Spleen cells from rats immunized with the syngeneic (C58NT)D Gross virus-induced lymphoma have been shown to differentiate into cytotoxic effector cells following secondary in vitro stimulation with tumor cells. In the studies presented here, we evaluated whether cells specifically responding to PPD would increase the development of specific cytotoxic reactivity by a second cell population primed to lymphoma antigen. Mixtures of (C58NT)D-primed and BCG-primed responding cells generated cytotoxic activity to syngeneic lymphoma cells following cocultivation with mitomycin C-treated stimulating (C58NT)D cells; the addition of PPD to these mixtures produced a significant increase in cytotoxicity. The increased antitumor response resulted from an increase in specific cytotoxic activity from primed precursor cells. Responding cells activated with PPD alone in the absence of lymphoma antigen showed no lytic activity. Optimal numbers of tuberculin sensitive cells and concentration of PPD were determined. Evaluation of the kinetics of the generation of the cytotoxic response indicated that the addition of BCG-primed ceils and PPD increased the magnitude of cytotoxicity but did not alter the time course of the generation of cytotoxic activity. The addition of tuberculin sensitive cells and PPD to the in vitro secondary immune response also led to augmentation of generation of cells with antitumor activity detectable in vivo.  相似文献   

14.
With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin–melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2–128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3–24 and 0.5–16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8–16 and 4–16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80–90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 μM (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %.  相似文献   

15.
BackgroundMesenchymal stem cells (MSCs) have paradoxically been reported to exert either pro- or anti-tumor effects in vitro. Hyperthermia, in combination with chemotherapy, has tumor-inhibiting effects; however, its role, together with MSCs, so far is not well understood. Furthermore, a lot of research is conducted using conventional 2-dimensional in vitro models that do not mimic the actual tumor microenvironment.AimIn light of this fact, an indirect method of co-culturing human amniotic membrane-derived MSCs (AMMSCs) with collagen-encapsulated human lung carcinoma cells (A549) was performed using a 3-dimensional (3D) tumor-on-chip device.MethodsThe conditioned medium of AMMSCs (AMMSC-CM) or heat-treated AMMSCs (heat-AMMSC-CM) was utilized to create indirect co-culture conditions. Tumor spheroid growth characterization, immunocytochemistry and cytotoxicity assays, and anti-cancer peptide (P1) screening were performed to determine the effects of the conditioned medium.ResultsThe A549 cells cultured inside the 3D microfluidic chip developed into multicellular tumor spheroids over five days of culture. The AMMSC-CM, contrary to previous reports claiming its tumor-inhibiting potential, led to significant proliferation of tumor spheroids. Heat-AMMSC-CM led to reductions in both spheroid diameter and cell proliferation. The medium containing the P1 peptide was found to be the least cytotoxic to tumor spheroids in co-culture compared with the monoculture and heat-co-culture groups.ConclusionsHyperthermia, in combination with the anticancer peptide, exhibited highest cytotoxic effects. This study highlights the growing importance of 3D microfluidic tumor models for testing stem-cell-based and other anti-cancer therapies.  相似文献   

16.
BackgroundProgrammed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which causes tumor cells to escape T cell killing, and promotes tumor cell survival, cell proliferation, migration, invasion, and angiogenesis. Britannin is a natural product with anticancer pharmacological effects.PurposeIn this work, we studied the anticancer potential of britannin and explored whether britannin mediated its effect by inhibiting the expression of PD-L1 in tumor cells.MethodsIn vitro, the mechanisms underlying the inhibition of PD-L1 expression by britannin were investigated by MTT assay, homology modeling and molecular docking, RT-PCR, western blotting, co-immunoprecipitation, and immunofluorescence. The changes in tumor killing activity, cell proliferation, cell cycle, migration, invasion, and angiogenesis were analyzed by T cell killing assays, EdU labeling, colony formation, flow cytometry, wound healing, matrigel transwell invasion, and tube formation, respectively. In vivo, the antitumor activity of britannin was evaluated in the HCT116 cell xenograft model.ResultsBritannin reduced the expression of PD-L1 in tumor cells by inhibiting the synthesis of the PD-L1 protein but did not affect the degradation of the PD-L1 protein. Britannin also inhibited HIF-1α expression through the mTOR/P70S6K/4EBP1 pathway and Myc activation through the Ras/RAF/MEK/ERK pathway. Mechanistically, britannin inhibited the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. In addition, britannin could enhance the activity of cytotoxic T lymphocytes and inhibit tumor cell proliferation and angiogenesis by inhibiting PD-L1. Finally, in vivo observations were confirmed by demonstrating the antitumor activity of britannin in a murine xenograft model.ConclusionBritannin inhibits the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. Moreover, britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by inhibiting PD-L1 in cancer. The current work highlights the anti-tumor effect of britannin, providing insights into the development of cancer therapeutics via PD-L1 inhibition.  相似文献   

17.
Archaeal flagellins are initially synthesized as preflagellins with a short, positively charged leader peptide, which is cleaved prior to the incorporation of the mature flagellins into the filament. While preflagellin peptidase activity had previously been detected in methanogen membranes, the enzyme responsible for this activity had not been identified. We show here that FlaK of Methanococcus maripaludis has preflagellin peptidase activity. In an in vitro preflagellin peptidase assay, Escherichia coli membranes overexpressing Methanococcus voltae preflagellin FlaB2 (as substrate) were combined with E. coli membranes overexpressing M. maripaludis FlaK (as enzyme). Cleavage of the preflagellin was demonstrated by immunoblotting using antibody to FlaB2 and detection of a faster migrating cross-reactive species. This activity required detergent in the assay, and was not detected in membranes previously heated to 95 degrees C. This is the first reported identification of the preflagellin peptidase, and aside from the flagellins, this is the first assignment of function to a gene involved in archaeal flagellation.  相似文献   

18.

Background

The Resonant Recognition Model (RRM) is a physico-mathematical model that interprets protein sequence linear information using digital signal processing methods. In this study the RRM concept was employed for structure-function analysis of myxoma virus (MV) proteins and the design of a short bioactive therapeutic peptide with MV-like antitumor/cytotoxic activity.

Methodology/Principal Findings

The analogue RRM-MV was designed by RRM as a linear 18 aa 2.3 kDa peptide. The biological activity of this computationally designed peptide analogue against cancer and normal cell lines was investigated. The cellular cytotoxicity effects were confirmed by confocal immunofluorescence microscopy, by measuring the levels of cytoplasmic lactate dehydrogenase (LDH) and by Prestoblue cell viability assay for up to 72 hours in peptide treated and non-treated cell cultures. Our results revealed that RRM-MV induced a significant dose and time-dependent cytotoxic effect on murine and human cancer cell lines. Yet, when normal murine cell lines were similarly treated with RRM-MV, no cytotoxic effects were observed. Furthermore, the non-bioactive RRM designed peptide RRM-C produced negligible cytotoxic effects on these cancer and normal cell lines when used at similar concentrations. The presence/absence of phosphorylated Akt activity in B16F0 mouse melanoma cells was assessed to indicate the possible apoptosis signalling pathway that could be affected by the peptide treatment. So far, Akt activity did not seem to be significantly affected by RRM-MV as is the case for the original viral protein.

Conclusions/Significance

Our findings indicate the successful application of the RRM concept to design a bioactive peptide analogue (RRM-MV) with cytotoxic effects on tumor cells only. This 2.345 kDa peptide analogue to a 49 kDa viral protein may be suitable to be developed as a potential cancer therapeutic. These results also open a new direction to the rational design of therapeutic agents for future cancer treatment.  相似文献   

19.
Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) 1H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36 Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.  相似文献   

20.
Background/AimsThe aim of this study was to compare the cytotoxic response against ovarian cancer (OC) cells elicited by different immune effector cells in combination with the cytokines interleukin (IL)-2 and interferon (IFN) α-2b.MethodsOC cells were co-cultured with peripheral blood mononuclear cells (PBMC) from normal donors or OC patients and IL-2 or IFN α-2b alone or in combination, in order to determine the cytotoxicity. T cells were isolated from healthy donors to determine T cell cytotoxic activity. PBMC from healthy donors and OC patients were expanded in an IL-2/IL-7/IL-12 cocktail with and without anti-CD3 antibody, and the cytotoxic activity measured. Flow cytometry was performed on primary, selected and expanded cells to determine T, B, and natural killer- (NK) cell percentages.ResultsHealthy donor PBMC elicited a significant cytotoxic response (59%) compared with OC patient PBMC (7%). T cells enriched from normal donors elicited a significant cytotoxic response (18%) compared with controls lacking effector cells (1.4%); however, the cytotoxicity observed was significantly less compared with unselected PBMC. Expanded effector cells consisted primarily of T cells (98%) and the fold-expansion was significantly higher in the presence of anti-CD3 (19- versus 132-fold). No significant difference in the expansion (either fold-expansion or cell type) was observed between OC patients and healthy donors. Expanded cells from both healthy donors and OC patients elicited a significant cytotoxic response in the presence of IL-2 (19% and 22%) compared with controls.ConclusionsPBMC from OC patients do not elicit a significant cytotoxic response; however, ex vivo-expanded cells from OC patients are capable of cytotoxic killing similar to unexpanded T cells isolated from normal donors. These data provide the groundwork for further development of cellular therapy against OC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号