首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious laryngotracheitis virus (ILTV) causes acute upper respiratory tract disease in chickens. Attenuated live ILTV vaccines are often used to help control disease, but these vaccines have well documented limitations, including retention of residual virulence, incomplete protection, transmission of vaccine virus to unvaccinated birds and reversion to high levels of virulence following bird-to-bird passage. Recently, two novel ILTV field strains (class 8 and 9 ILTV viruses) emerged in Australia due to natural recombination between two genotypically distinct commercial ILTV vaccines. These recombinant field strains became dominant field strains in important poultry producing areas. In Victoria, Australia, the recombinant class 9 virus largely displaced the previously predominant class 2 ILTV strain. The ability of ILTV vaccines to protect against challenge with the novel class 9 ILTV strain has not been studied. Here, the protection induced by direct (drinking-water) and indirect (contact) exposure to four different ILTV vaccines against challenge with class 9 ILTV in commercial broilers was studied. The vaccines significantly reduced, but did not prevent, challenge virus replication in vaccinated chickens. Only one vaccine significantly reduced the severity of tracheal pathology after direct drinking-water vaccination. The results indicate that the current vaccines can be used to help control class 9 ILTV, but also indicate that these vaccines have limitations that should be considered when designing and implementing disease control programs.  相似文献   

2.
In contrast to the RNA viruses, the genome of large DNA viruses such as herpesviruses have been considered to be relatively stable. Intra-specific recombination has been proposed as an important, but underestimated, driving force in herpesvirus evolution. Recently, two distinct field strains of infectious laryngotracheitis virus (ILTV) have been shown to have arisen from independent recombination events between different commercial ILTV vaccines. In this study we sequenced the genomes of additional ILTV strains and also utilized other recently updated complete genome sequences of ILTV to confirm the existence of a number of ILTV recombinants in nature. Multiple recombination events were detected in the unique long and repeat regions of the genome, but not in the unique short region. Most recombinants contained a pair of crossover points between two distinct lineages of ILTV, corresponding to the European origin and the Australian origin vaccine strains of ILTV. These results suggest that there are two distinct genotypic lineages of ILTV and that these commonly recombine in the field.  相似文献   

3.
H9N2 avian influenza viruses continue to circulate worldwide; in Asia, H9N2 viruses have caused disease outbreaks and established lineages in land-based poultry. Some H9N2 strains are considered potentially pandemic because they have infected humans causing mild respiratory disease. In addition, some of these H9N2 strains replicate efficiently in mice without prior adaptation suggesting that H9N2 strains are expanding their host range. In order to understand the molecular basis of the interspecies transmission of H9N2 viruses, we adapted in the laboratory a wildtype duck H9N2 virus, influenza A/duck/Hong Kong/702/79 (WT702) virus, in quail and chickens through serial lung passages. We carried out comparative analysis of the replication and transmission in quail and chickens of WT702 and the viruses obtained after 23 serial passages in quail (QA23) followed by 10 serial passages in chickens (QA23CkA10). Although the WT702 virus can replicate and transmit in quail, it replicates poorly and does not transmit in chickens. In contrast, the QA23CkA10 virus was very efficient at replicating and transmitting in quail and chickens. Nucleotide sequence analysis of the QA23 and QA23CkA10 viruses compared to the WT702 virus indicated several nucleotide substitutions resulting in amino acid changes within the surface and internal proteins. In addition, a 21-amino acid deletion was found in the stalk of the NA protein of the QA23 virus and was maintained without further modification in the QA23CkA10 adapted virus. More importantly, both the QA23 and the QA23CkA10 viruses, unlike the WT702 virus, were able to readily infect mice, produce a large-plaque phenotype, showed faster replication kinetics in tissue culture, and resulted in the quick selection of the K627 amino acid mammalian-associated signature in PB2. These results are in agreement with the notion that adaptation of H9 viruses to land-based birds can lead to strains with expanded host range.  相似文献   

4.
Newcastle disease virus (NDV) can cause severe disease in chickens. Although NDV vaccines exist, there are frequent reports of outbreaks in vaccinated chickens. During 2009–2010, despite intense vaccination, NDV caused major outbreaks among commercial poultry farms in Indonesia. These outbreaks raised concern regarding the protective immunity of current vaccines against circulating virulent strains in Indonesia. In this study, we investigated whether a recombinant attenuated Indonesian NDV strain could provide better protection against prevalent Indonesian viruses. A reverse genetics system for the highly virulent NDV strain Banjarmasin/010/10 (Ban/010) isolated in Indonesia in 2010 was constructed. The Ban/010 virus is classified in genotype VII of class II NDV, which is genetically distinct from the commercial vaccine strains B1 and LaSota, which belong to genotype II, and shares only 89 and 87% amino acid identity for the protective antigens F and HN, respectively. A mutant virus, named Ban/AF, was developed in which the virulent F protein cleavage site motif “RRQKR↓F” was modified to an avirulent motif “GRQGR↓L” by three amino acid substitutions (underlined). The Ban/AF vaccine virus did not produce syncytia or plaques in cell culture, even in the presence of added protease. Pathogenicity tests showed that Ban/AF was completely avirulent. Ban/AF replicated efficiently during 10 consecutive passages in chickens and remained genetically stable. Serological analysis showed that Ban/AF induced higher neutralization and hemagglutination inhibition antibody titers against the prevalent viruses than the commercial vaccines B1 or LaSota. Both Ban/AF and commercial vaccines provided protection against clinical disease and mortality after challenge with virulent NDV strain Ban/010 (genotype VII) or GB Texas (genotype II). However, Ban/AF significantly reduced challenge virus shedding from the vaccinated birds compared to B1 vaccine. These results suggest that Ban/AF can provide better protection than commercial vaccines and is a promising vaccine candidate against NDV strains circulating in Indonesia.  相似文献   

5.
Due to the high mortality associated with recent, widely circulating strains of H5N1 influenza virus in poultry, the recurring introduction of H5N1 viruses from birds to humans, and the difficulties in H5N1 eradication by elimination of affected flocks, an effective vaccine against HPAI (highly pathogenic avian influenza) is highly desirable. Using reverse genetics, a set of experimental live attenuated vaccine strains based on recombinant H5N1 influenza virus A/Viet Nam/1203/04 was generated. Each virus was attenuated through expression of a hemagglutinin protein in which the polybasic cleavage site had been removed. Viruses were generated which possessed a full-length NS1 or a C-terminally truncated NS1 protein of 73, 99, or 126 amino acids. Viruses with each NS genotype were combined with a PB2 polymerase gene which carried either a lysine or a glutamic acid at position 627. We predicted that glutamic acid at position 627 of PB2 would attenuate the virus in mammalian hosts, thus increasing the safety of the vaccine. All recombinant viruses grew to high titers in 10-day-old embryonated chicken eggs but were attenuated in mammalian cell culture. Induction of high levels of beta interferon by all viruses possessing truncations in the NS1 protein was demonstrated by interferon bioassay. The viruses were each found to be highly attenuated in a mouse model. Vaccination with a single dose of any virus conferred complete protection from death upon challenge with a mouse lethal virus expressing H5N1 hemagglutinin and neuraminidase proteins. In a chicken model, vaccination with a single dose of a selected virus encoding the NS1 1-99 protein completely protected chickens from lethal challenge with homologous HPAI virus A/Viet Nam/1203/04 (H5N1) and provided a high level of protection from a heterologous virus, A/egret/Egypt/01/06 (H5N1). Thus, recombinant influenza A/Viet Nam/1203/04 viruses attenuated through the introduction of mutations in the hemagglutinin, NS1, and PB2 coding regions display characteristics desirable for live attenuated vaccines and hold potential as vaccine candidates in poultry as well as in mammalian hosts.  相似文献   

6.
During surveillance programs in Korea between January 2006 and March 2011, 31 H7 avian influenza viruses were isolated from wild birds and domestic ducks and genetically characterized using large-scale sequence data. All Korean H7 viruses belonged to the Eurasian lineage, which showed substantial genetic diversity, in particular in the wild birds. The Korean H7 viruses from poultry were closely related to those of wild birds. Interestingly, two viruses originating in domestic ducks in our study had the same gene constellations in all segment genes as viruses originating in wild birds. The Korean H7 isolates contained avian-type receptors (Q226 and G228), no NA stalk deletion (positions 69–73), no C-terminal deletion (positions 218–230) in NS1, and no substitutions in PB2-627, PB1-368, and M2-31, compared with H7N9 viruses. In pathogenicity experiments, none of the Korean H7 isolates tested induced clinical signs in domestic ducks or mice. Furthermore, while they replicated poorly, with low titers (10 0.7–1.3EID50/50 µl) in domestic ducks, all five viruses replicated well (up to 7–10 dpi, 10 0.7–4.3EID50/50 µl) in the lungs of mice, without prior adaptation. Our results suggest that domestic Korean viruses were transferred directly from wild birds through at least two independent introductions. Our data did not indicate that wild birds carried poultry viruses between Korea and China, but rather, that wild-type H7 viruses were introduced several times into different poultry populations in eastern Asia.  相似文献   

7.

Background

During the past two decades, avian influenza A H9N2 viruses have spread geographically and ecologically in China. Other than its current role in causing outbreaks in poultry and sporadic human infections by direct transmission, H9N2 virus could also serve as an progenitor for novel human avian influenza viruses including H5N1, H7N9 and H10N8. Hence, H9N2 virus is becoming a notable threat to public health. However, despite multiple lineages and genotypes that were detected by previous studies, the migration dynamics of the H9N2 virus in China is unclear. Increasing such knowledge would help us better prevent and control H9N2 as well as other future potentially threatening viruses from spreading across China. The objectives of this study were to determine the source, migration patterns, and the demography history of avian influenza A H9N2 virus that circulated in China.

Results

Using Bayesian phylogeography framework, we showed that the H9N2 virus in mainland China may have originated from the Hong Kong Special Administrative Region (SAR). Southern China, most likely the Guangdong province acts as the primary epicentre for multiple H9N2 strains spreading across the whole country, and eastern China, most likely the Jiangsu province, acts as an important secondary source to seed outbreaks. Our demography inference suggests that during the long-term migration process, H9N2 evolved into multiple diverse lineages and then experienced a selective sweep, which reduced its genetic diversity. Importantly, such a selective sweep may pose a greater threat to public health because novel strains confer higher fitness advantages than strains being replaced and could generate new viruses through reassortment.

Conclusion

Our analyses indicate that migratory birds, poultry trade and transportation have all contributed to the spreading of the H9N2 virus in China. The ongoing migration and evolution of H9N2, which poses a constant threat to the human population, highlights the need for a more comprehensive surveillance of wild birds and for the enhancement of biosafety for China’s poultry industry.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1110) contains supplementary material, which is available to authorized users.  相似文献   

8.
The H5N1 influenza virus, which killed humans and poultry in 1997, was a reassortant that possibly arose in one type of domestic poultry present in the live-poultry markets of Hong Kong. Given that all the precursors of H5N1/97 are still circulating in poultry in southern China, the reassortment event that generated H5N1 could be repeated. Because A/goose/Guangdong/1/96-like (H5N1; Go/Gd) viruses are the proposed donors of the hemagglutinin gene of the H5N1 virus, we investigated the continued circulation, host range, and transmissibility of Go/Gd-like viruses in poultry. The Go/Gd-like viruses caused weight loss and death in some mice inoculated with high virus doses. Transmission of Go/Gd-like H5N1 viruses to geese by contact with infected geese resulted in infection of all birds but limited signs of overt disease. In contrast, oral inoculation with high doses of Go/Gd-like viruses resulted in the deaths of up to 50% of infected geese. Transmission from infected geese to chickens occurred only by fecal contact, whereas transmission to quail occurred by either aerosol or fecal spread. This difference is probably explained by the higher susceptibility of quail to Go/Gd-like virus. The high degree of susceptibility of quail to Go/Gd (H5N1)-like viruses and the continued circulation of H6N1 and H9N2 viruses in quail support the hypothesis that quail were the host of origin of the H5N1/97 virus. The ease of transmission of Go/Gd (H5N1)-like viruses to land-based birds, especially quail, supports the wisdom of separating aquatic and land-based poultry in the markets in Hong Kong and the need for continued surveillance in the field and live-bird markets in which different types of poultry are in contact with one another.  相似文献   

9.
Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.  相似文献   

10.
将禽流感病毒M2基因克隆于真核表达质粒pIRES-EGFP中,使其位于pCMV启动子的调控下,并与绿色荧光蛋白基因(EGFP)串联后,将上述串联基因插入到含MDV CVI988的非必需区US基因的重组质粒pUS2中,构建带标记的重组质粒,然后将此重组质粒转染感染了MDV CVI988的鸡胚成纤维细胞,利用同源重组的方法,筛选了表达禽流感病毒M2基因的重组病毒MDV1。经PCR、Dot-blotting,Western-blotting等实验的结果表明,禽流感病毒M2基因的确插入到MDV1(CVI988)基因组中并获得表达。重组MDV1免疫1日龄SPF鸡21天后,用ELISA可检测到M2蛋白的特异性抗体。接种了重组病毒rMDV的鸡体内针对H9N2疫苗血凝素的抗体滴度(p<0.05)明显提高,以禽流感病毒AIV A/Chicken/Guangdong/00(H9N2)攻毒后进行病毒重分离试验的结果发现,重组病毒能有效地降低病毒的排出量(p<0.01),说明该重组病毒可以用于防制禽流感的免疫。  相似文献   

11.
Despite substantial efforts to control H5N1 avian influenza viruses (AIVs), the viruses have continued to evolve and cause disease outbreaks in poultry and infections in humans. In this report, we analyzed 51 representative H5N1 AIVs isolated from domestic poultry, wild birds, and humans in China during 2004 to 2009, and 21 genotypes were detected based on whole-genome sequences. Twelve genotypes of AIVs in southern China bear similar H5 hemagglutinin (HA) genes (clade 2.3). These AIVs did not display antigenic drift and could be completely protected against by the A/goose/Guangdong/1/96 (GS/GD/1/96)-based oil-adjuvanted killed vaccine and recombinant Newcastle disease virus vaccine, which have been used in China. In addition, antigenically drifted H5N1 viruses, represented by A/chicken/Shanxi/2/06 (CK/SX/2/06), were detected in chickens from several provinces in northern China. The CK/SX/2/06-like viruses are reassortants with newly emerged HA, NA, and PB1 genes that could not be protected against by the GS/GD/1/96-based vaccines. These viruses also reacted poorly with antisera generated from clade 2.2 and 2.3 viruses. The majority of the viruses isolated from southern China were lethal in mice and ducks, while the CK/SX/2/06-like viruses caused mild disease in mice and could not replicate in ducks. Our results demonstrate that the H5N1 AIVs circulating in nature have complex biological characteristics and pose a continued challenge for disease control and pandemic preparedness.The highly pathogenic H5N1 influenza viruses that emerged over a decade ago in southern China have evolved into over 10 distinct phylogenetic clades based on their hemagglutinin (HA) genes. The viruses have spread to over 63 countries and to multiple mammalian species, including humans, resulting in 498 cases of infection and 294 deaths by 6 May 2010 according to the World Health Organization (WHO) (http://www.who.int). To date, none of the different H5N1 clades has acquired the ability to consistently transmit among mammalian species. The currently circulating H5N1 viruses are unique in that they continue to circulate in avian species. All previous highly pathogenic H5 and H7 viruses have naturally “burned out” or were stamped out because of their high pathogenicity in domestic poultry. While there is growing complacency about the potential of H5N1 “bird flu” to attain consistent transmissibility in humans and develop pandemicity, it is worth remembering that we have no knowledge of the time that it took the 1918 Spanish, the 1957 Asian, the 1968 Hong Kong, and the 2009 North American pandemics to develop their pandemic potentials. We may therefore currently be witnessing in real time the evolution of an H5N1 pandemic influenza virus.H5N1 avian influenza viruses (AIVs) were first detected in sick geese in Guangdong province in 1996, and both nonpathogenic and highly pathogenic (HP) H5N1 viruses were described (18). In 1997, H5N1 reassortant viruses that derived the HA gene from A/goose/Guangdong/1/96 (GS/GD/1/96)-like viruses and the other genes from H6N1 and/or H9N2 viruses caused lethal outbreaks in poultry and humans in Hong Kong (6, 7). Since then, long-term active surveillance of influenza viruses in domestic poultry has been performed, and multiple subtypes of influenza viruses have been detected in chickens and ducks in China (16, 19, 37). H5N1 influenza viruses have been repeatedly detected in apparently healthy ducks in southern China since 1999 (4, 13) and were also detected in pigs in Fujian province in 2001 and 2003 (39).Since the beginning of 2004, there have been significant outbreaks of H5N1 avian influenza virus infection involving multiple poultry farm flocks in more than 20 provinces in China (2). H5N1 viruses resulted in the deaths of millions of domestic poultry, including chickens, ducks, and geese, as the result of infection or of culling and the deaths of thousands of wild birds (5, 20). Thirty-eight human cases of HP H5N1 infection with 25 fatalities have been associated with direct exposure to infected poultry (WHO; http://www.who.int). Since 2004, the vaccination of domestic poultry has been used for the control of HP H5N1 influenza virus in China. While this strategy has been effective at reducing the incidence of HP H5N1 in poultry and at markedly reducing the number of human cases, it is impossible to vaccinate every single bird due to the enormous poultry population. Outbreaks of H5N1 influenza virus still continue to occur in poultry although at a reduced frequency.A previous study by Smith et al. reported that a “Fujian-like” H5N1 influenza virus emerged in late 2005 and predominated in poultry in southern China (26). Those authors suggested that vaccination may have facilitated the selection of the “Fujian-like” sublineage. Here, we analyzed 51 representative H5N1 viruses that were isolated from wild birds, domestic poultry, and humans from 2004 to 2009 in China and described their genetic evolution and antigenicity profiles. Our results indicate that H5N1 influenza viruses in southern China, including the “Fujian-like” viruses, are complicated reassortants, which could be well protected against by GS/GD/1/96 virus-based vaccines. We documented the emergence of the latest variant of H5N1 (A/chicken/Shanxi/2/06 [CK/SX/2/06]) that broke through existing poultry vaccines. We show that this variant is less pathogenic in mice and ducks than the earlier strains and propose that the variant was not selected by the use of vaccines.  相似文献   

12.
Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48x104 genome copies/m3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.  相似文献   

13.
Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes severe and economically significant respiratory disease in poultry worldwide. Herein, the immunogenicity of two recombinant fowlpox viruses (rFPV-gB and rFPV-gB/IL18) containing ILTV glycoprotein B (gB) and chicken interleukin-18 (IL-18) were investigated in a challenge model. One-day-old specific-pathogen-free chickens were vaccinated by wing-web puncture with the two rFPVs and challenged with the virulent ILTV CG strain. There were differences in antibody levels elicited by either rFPV-gB/IL18 or rFPV-gB as determined using ELISA. The ratios of CD4(+) to CD8(+) in chickens immunized with rFPV-gB/IL18 were higher (P < 0.05) than in those immunized with rFPV-gB, and the level of proliferative response of the T cells in the rFPV-gB/IL18-vaccinated group was higher (P < 0.05) than that in the rFPV-gB group. All chickens immunized with rFPV-gB/IL18 were protected (10/10), whereas only eight of 10 of the chickens immunized with the rFPV-gB were protected. The results showed that the protective efficacy of the rFPV-gB vaccine could be enhanced by simultaneous expression of chicken IL-18.  相似文献   

14.
Newcastle Disease Virus (NDV) is a pathogenic strain of avian paramyxovirus (aPMV-1) that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on viral glycoproteins.  相似文献   

15.

Background

Since 2008, a progressive pneumonia has become prevalent in broilers and laying hens. This disease occurrs the first day after hatching and lasts more than 30?days, resulting in approximately 70% morbidity and 30% mortality in broilers. The objective of this study was to isolate and identify the pathogens that are responsible for the progressive pneumonia and establish an animal model for drug screening.

Results

193 serum samples were collected from 8 intensive farms from 5 provinces in China and analysed in the current research. Our clinical survey showed that 65.2% to 100% of breeding broilers, breeding layers, broilers and laying hens were seropositive for ORT antibodies. From 8 intensive farms, six ORT isolates were identified by PCR and biochemical assays, and two H9N2 viruses were isolated. Newcastle Disease Virus (NDV) and Infectious BronchitisVirus (IBV) were excluded. Typical pneumonia and airsacculitis were observed both in broilers inoculated intraperitoneally with an ORT isolate alone and in those co-infected with ORT and H9N2 virus isolates. Specifically, the survival rate was 30%, 20%, 70%, 50% and 90% in birds inoculated with ORT+H9N2 virus, ORT followed by H9N2 virus, H9N2 virus followed by ORT, and ORT or H9N2 virus alone, respectively.

Conclusions

The results of this study suggest that ORT infections of domestic poultry have been occurring frequently in China. ORT infection can induce higher economic losses and mortality if H9N2 AIV is also present. Although the isolation of ORT and H9N2 virus has been reported previously, there have been no reported co-infections of poultry with these two pathogens. This is the first report of co-infection of broilers with ORT and H9N2 virus, and this co-infection is probably associated with the outbreak of broiler airsacculitis in China, which has caused extensive economic losses.  相似文献   

16.
To elucidate the role of sparrows as intermediate hosts of highly pathogenic avian influenza H5N1 viruses, we assessed shedding and interspecies waterborne transmission of A/duck/Laos/25/06 in sparrows and chickens. Inoculated birds shed virus at high titers from the oropharynx and cloaca, and infection was fatal. Waterborne transmission from inoculated sparrows to contact chickens was absent, while 25% of sparrows were infected via waterborne transmission from chickens. The viral shedding and susceptibility to infection we observed in sparrows, coupled with their presence in poultry houses, could facilitate virus spread among poultry and wild birds in the face of an H5N1 influenza virus outbreak.The H5N1 influenza A viruses remain a major global concern because of their rapid evolution, genetic diversity, broad host range, and ongoing circulation in wild and domestic birds. H5N1 influenza viruses have swept through poultry flocks across Asia and have spread westward through Eastern Europe to India and Africa since 2003 (1). Sixty-two countries have reported H5N1 influenza virus in domestic poultry/wild birds during the time period 2003 to 2009 (http://www.oie.int/eng/info_ev/en_AI_factoids_2.htm), and to date, more than 400 human infections have been documented in 16 countries, with a mortality rate of ∼61% (http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_05_22/en/index.html). Most human cases of H5N1 influenza have occurred after contact with infected poultry (13).Some of the more recent isolates of H5N1 highly pathogenic avian influenza (HPAI) virus do not cause overt disease in certain species of domestic and wild ducks; however, these viruses are 100% lethal to chickens and gallinaceous poultry. Because of ducks’ ability to “silently” spread H5N1 HPAI virus and their unresolved role as a reservoir, they are the focus of much research (5, 6, 11). In contrast, the possible role of passerine birds has received little attention, despite their widespread interaction with poultry at many sites worldwide (http://www.searo.who.int/LinkFiles/Publication_PHI-prevention-control-AI.pdf). The order Passeriformes includes more than half of all bird species, including sparrows. Since 2001, several outbreaks of H5N1 influenza virus infection have been reported in passerine birds in eastern Asia, often near infected poultry farms (15). Interestingly, the only confirmed presence of asymptomatic infection with HPAI H5N1 in wild birds was in tree sparrows in Henan Province, China. Both tree and house sparrows (Passer montanus and Passer domesticus, respectively) are members of the Old World sparrow family Passeridae, and in fact, the tree sparrow was not recognized as a species separate from that of the house sparrow until 1713 (http://www.arkive.org/tree-sparrow/passer-montanus/info.html?displayMode=factsheet). The four avian influenza virus isolates obtained from these asymptomatic infections were of the A/Goose/Guangdong/1/96 lineage and were highly pathogenic to experimentally infected chickens (4, 8).Under experimental conditions, passerine species have shown varied susceptibility to HPAI H5N1 viruses. Among sparrows, starlings, and pigeons inoculated with HPAI H5N1 virus isolates, only sparrows experienced lethal infection, and transmission to contact birds was extremely rare (2). Similarly, in sparrows and starlings inoculated with the H5N1 HPAI A/chicken/Hong Kong/220/97 virus, clinical signs were observed only in sparrows, and no deaths occurred (9).To assess the duration and routes of virus shedding and the waterborne virus transmission of HPAI H5N1 virus between sparrows and chickens, we inoculated groups of birds with A/duck/Laos/25/06, which had caused extremely high morbidity and mortality in domestic ducks (7) and was highly pathogenic to chickens, geese, and quail (J.-K. Kim and R. G. Webster, unpublished data). The virus was obtained from our collaborators in Lao People''s Democratic Republic and was grown in the allantoic cavities of 10-day-old embryonated chicken eggs (eggs) for 36 to 48 h at 35°C. The allantoic fluid was harvested, titrated (50% egg infective dose [EID50] per milliliter), and stored at −80°C. All experiments were approved by the U.S. Department of Agriculture and the U.S. Centers for Disease Control and Prevention and were performed in biosafety level 3+ facilities at St. Jude Children''s Research Hospital. Wild house sparrows (Passer domesticus) were captured locally (Memphis, TN), and specific-pathogen-free outbred White Leghorn chickens (Gallus domesticus) were purchased from Charles River Laboratories (North Franklin, CT). All animal experiments were approved by the St. Jude Animal Care and Use Committee and complied with the policies of the National Institutes of Health and the Animal Welfare Act.Before inoculation, oropharyngeal and cloacal swabs were collected from sparrows, and baseline blood samples were collected from chickens to exclude preexisting H5N1 influenza virus infection. Eight sparrows were inoculated intranasally with 106 EID50 of virus in a volume of 100 μl, and five chickens were inoculated with 102 EID50 of virus in a volume of 1 ml (0.5 ml intranasally, 0.5 ml intratracheally, and 1 drop per eye). All birds in each experimental group were housed in a single cage. Inoculated sparrows were provided with 1 liter of water in a shallow stainless steel pan at the bottom of the cage, and chickens were given 3 liters of water in a trough inside the cage. Twenty-four hours after inoculation, 1 liter of water was removed from the inoculated chickens’ cage and placed undiluted in a cage housing 8 contact sparrows; similarly, 1 liter of water was taken from the inoculated sparrows’ cage, mixed with 2 liters of fresh water, and placed in a cage housing 5 contact chickens. Clinical disease signs, including depression, huddling at the cage bottom, and ruffled feathers, were monitored through daily observation, and oropharyngeal and cloacal swabs obtained from all birds were collected daily for 14 days. Swab samples were titrated in eggs and expressed as log10 EID50/ml (10). The lower limit of detection was 0.75 log10 EID50/ml.Blood samples were taken from all surviving contact birds on day 14 of the study. Sera were treated with a receptor-destroying enzyme (Denka Seiken, Campbell, CA), as instructed by the manufacturer, and heat inactivated at 56°C for 30 min. Hemagglutination inhibition (HI; using 0.5% packed chicken red blood cells) titers were determined as the reciprocal of the highest serum dilution that inhibited 4 hemagglutinating units of virus. HI titers of ≥10 were considered suggestive of recent influenza virus infection.Inoculation with A/duck/Laos/25/06 was lethal to all birds (Table (Table1).1). While chickens succumbed to infection within 2 days postinoculation (p.i.), the mean time until death for sparrows was 4.1 days; mortality occurred rapidly (overnight) without prior observation of clinical signs. Expected clinical signs, should they have occurred, included moderate to severe depression, huddling at the cage bottom, and ruffled feathers (9). All inoculated birds shed virus from the oropharynx and, to a lesser extent, from the cloaca (Fig. 1A and B). The mean virus titers of inoculated chickens and sparrows were comparable on day 1 p.i.; however, on day 2 p.i., the mean oropharyngeal and cloacal viral titers of chickens were approximately 2 and 2.5 times greater, respectively, than those of sparrows (Fig. 1A and B). The virus titer in water used by inoculated sparrows was 100.75 EID50/ml at 1 day p.i. and peaked at 101.75 EID50/ml on days 2 and 4 p.i. (Fig. (Fig.1C).1C). No virus was detected in water from the inoculated chickens’ cage.Open in a separate windowFIG. 1.Mean oropharyngeal and cloacal virus titers in sparrows (A) and chickens (B) inoculated with a lethal dose of A/duck/Laos/25/06 (H5N1) virus. (C) Virus titers in the drinking water of inoculated sparrows. Sparrows were inoculated with 106 EID50/ml of virus, and chickens were inoculated with 102 EID50/ml of virus. The lower limit of detection was 0.75 log10 EID50/ml.

TABLE 1.

Transmission rates, mortality rates, and mean peak titers of A/duck/Laos/25/06 (H5N1) virus in inoculated and contact birds
GroupType of bird (no.)Infection routeTransmission rate (%)Mortality rate (%)Mean peak virus titer (log10 EID50/ml)a
OropharyngealCloacal
1Chickens (5)Inoculation1001006.455.95
Sparrows (8)Contactb25253.884.25
2Sparrows (8)Inoculation1001004.564.03
Chickens (5)Contactc00NANA
Open in a separate windowaSwab samples were taken daily after virus inoculation and after introduction of infective water to contacts. NA, not applicable.bContact sparrows were given 1 liter of water containing 1 ml resuspended fecal material (106.5 EID50/ml) obtained from infected chickens on day 2 p.i.cContact chickens were given 3 liters of a 1:3 dilution of water from the trough used by inoculated sparrows.Virus was not isolated from the swab samples obtained from contact chickens, suggesting the absence of waterborne virus transmission from sparrows (Table (Table1).1). Further, HI testing of the contact chickens detected no virus-specific antibodies (data not shown). Because virus was not detected in the water from the inoculated chickens’ cage, we generated a contaminated water source for the contact sparrows by creating a suspension of fecal material in phosphate-buffered saline (PBS; 106.5 EID50/ml), using swabs obtained from all five infected chickens at 2 days p.i.; we added 1 ml of this mixture to 1 liter of fresh water for a final concentration of 103.5 EID50/ml. Waterborne virus was transmitted to 2 of 8 contact sparrows, whose deaths occurred at 5 days and 10 days postcontact, respectively.Our results showed that sparrows were susceptible to the A/duck/Laos/25/06 (H5N1) virus at a wide range of doses, as demonstrated by the 100% mortality of both inoculated sparrows (106 EID50 of virus intranasally) and infected contact sparrows (water contained 103.5 EID50/ml of virus). The 100% lethality of the virus to sparrows supports the report of Boon et al. (2) stating that more recent (2005-2006) H5N1 isolates appear to be more pathogenic to passerine birds than earlier isolates, such as A/chicken/Hong Kong/220/97 (H5N1).While the duration and route of virus shedding clearly varied between infected sparrows and chickens, results also suggested that transmission rates may be different between the two species, as transmission occurred only from chickens to sparrows via artificially contaminated water (and not vice versa). Virus transmission from sparrows to chickens may require direct contact and/or aerosol transmission rather than ingestion of waterborne virus, seeing as water titers were as high as 101.25 EID50/ml (on days 1 and 3 postcontact) after dilution with fresh water, and this dose was 100% lethal to experimentally infected ducks (7). Additionally, in our experiment, A/duck/Laos/25/06 was rapidly lethal to naturally infected chickens at a dose of 102 EID50/ml. Alternatively, transmission from infected sparrows to chickens may require a higher virus titer in the water. Future studies are indicated to determine the concentration of contaminated sparrow water necessary to infect chickens with A/duck/Laos/25/06 and to determine transmissibility of HPAI H5N1 virus from infected chickens to contact sparrows via naturally contaminated water.The undetectable level of virus in the water trough of inoculated chickens, all of which shed high levels of virus from the oropharynx and cloaca, may reflect rapid disease progression that caused the chickens to stop drinking water by day 1 p.i. and succumb to infection on day 2 p.i. These results may indicate that sparrows are unlikely to be infected under normal circumstances during an H5N1 virus outbreak. Our findings could also be attributed to the extremely high lethality of A/duck/Laos/25/06 to chickens and the reduced period of time for shedding, compared to those of other recent HPAI H5N1 virus isolates where mortality occurred as late as day 5 p.i. in experimentally infected chickens (12, 14). In contrast, the sparrows shed virus for several days, and their drinking water was rapidly contaminated with virus. The long-term shedding we observed in sparrows was also seen by Brown et al. in house sparrows infected with A/whooper swan/Mongolia/244/05 (H5N1) HPAI virus (3). These findings, in view of the widespread intermingling of land-based wild birds with wild and domestic waterfowl and poultry (2, 3), suggest that passerine birds can facilitate the spread of H5N1 virus.Throughout the United States, sparrows and starlings are commonly found in low-biosecurity poultry housing, where they often eat and drink from the feed and water troughs. We used a shallow stainless steel basin in our sparrow enclosures to simulate these poultry watering troughs, which allow flocks of wild birds, such as sparrows, to bathe, defecate, and drink. Although we did not observe sparrows bathing in the water basin during the study, seed and fecal droppings were present in the water, indicating that the sparrows were either perching on the water basin or standing in the water. In the face of an H5N1 outbreak, these birds could spread virus within or among poultry facilities and the wild bird population by contaminating food and/or water with feces and/or oropharyngeal secretions. Our findings on the shedding of HPAI H5N1 virus in infected sparrows, when taken together with the ethological knowledge of these birds, suggest that the behavior of infected sparrows may be a critical determinant of their ability to act as an intermediate host for influenza. Understanding the importance of influenza infection in nonwaterfowl and nonpoultry species is therefore an area that necessitates further research.To our awareness, this is the first experimental study to illustrate interspecies transmission of H5N1 virus between poultry and wild birds. The transmission of waterborne virus to 25% of sparrows provides further evidence that they can serve as intermediate hosts of H5N1 viruses. Although we did not observe waterborne virus transmission from sparrow to chicken, further studies are needed to investigate the transmission of other H5N1 virus strains and to examine the role of direct contact.  相似文献   

17.
Highly pathogenic avian influenza H5N1 viruses are found chiefly in birds and have caused severe disease and death in infected humans. Development of influenza vaccines capable of inducing heterosubtypic immunity against a broad range of influenza viruses is the best option for the preparedness, since vaccination remains the principal method in controlling influenza viral infections. Here, a mOMV-adjuvanted recombinant H5N2 (rH5N2) whole virus antigen vaccine with A/Environment/Korea/W149/06(H5N1)-derived H5 HA and A/Chicken/Korea/ma116/04(H9N2)-derived N2 NA in the backbone of A/Puerto Rico/8/34(H1N1) was prepared and generated by reverse genetics. Groups of mice were vaccinated by a prime-boost regime with the rH5N2 vaccine (1.75 μg of HA with/without 10 μg mOMV or aluminum hydroxide adjuvant for comparison). At two weeks post-immunizations, vaccinated mice were challenged with lethal doses of 103.5 EID50/ml of H5N1 or H9N2 avian influenza viruses, and were monitored for 15 days. Both mOMV- and alum-adjuvant vaccine groups had high survival rates after H5N1 infection and low levels of body weight changes compared to control groups. Interestingly, the mOMV-adjuvanted group induced better cross-reactive antibody responses serologically and promoted cross-protectivity against H5N1 and H9N2 virus challenges. Our results suggest that mOMV could be used as a vaccine adjuvant in the development of effective vaccines used to control influenza A virus transmission.  相似文献   

18.
【目的】通过比较不同时期的H9N2亚型禽流感流行毒株HA基因的分子特征和变异频率,揭示免疫压力下病毒的遗传演化趋势。【方法】选取源于课题组的40株鸡源H9N2毒株,以及从Gen Bank下载的136株中国鸡源H9N2流行毒株和7株经典毒株的序列,利用Lasergen 7.1和MEGA 5.1等软件,对其HA基因进行系统演化、分子特征和变异频率分析。【结果】系统发育分析表明,近20年的鸡源H9N2流行株分属于BJ94、Y280和S2等谱系,优势流行株的分布与年代密切相关。氨基酸序列比较显示,H9N2病毒不同谱系之间具有各自的特征,且存在着明显的氨基酸变异积累。以Ck/BJ/1/1994 HA基因为参照,1994–2014年间,H9N2流行株核苷酸和氨基酸的年均进化率分别为5.73×10^(–3)和4.25×10^(–3)。其中,2011–2014年的核苷酸(氨基酸)年均进化率为6.35×10^(–3)(5.32×10^(–3)),明显高于2006–2010年5.22×10^(–3)(3.70×10^(–3)),更显著高于疫苗推广初期1999–2005年的0.74×10^(–3)(0.50×10^(–3))。【结论】H9N2疫苗株和流行毒株的不匹配是病毒变异频率加快的重要原因。  相似文献   

19.
In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.  相似文献   

20.
The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号