共查询到20条相似文献,搜索用时 15 毫秒
1.
Seo HS Choi HS Kim SR Choi YK Woo SM Shin I Woo JK Park SY Shin YC Ko SK 《Molecular and cellular biochemistry》2012,366(1-2):319-334
Phytoestrogens are known to prevent tumor induction. But their molecular mechanisms of action are still unknown. This study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of MCF-7 vec and MCF-7 HER2 cells. This growth inhibition was accompanied with an increase of sub G(0)/G(1) apoptotic fractions. Overexpression of HER2 did not confer resistance to apigenin in MCF-7 cells. Apigenin-induced extrinsic apoptosis pathway up-regulating the levels of cleaved caspase-8, and inducing the cleavage of poly (ADP-ribose) polymerase, whereas apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential maintaining red fluorescence and did not affect the levels of B-cell lymphoma 2 (BCL2) and Bcl-2-associated X protein. Moreover, apigenin reduced the tyrosine phosphorylation of HER2 (phospho-HER2 level) in MCF-7 HER2 cells, and up-regulated the levels of p53, phospho-p53 and p21 in MCF-7 vec and MCF-7 HER2 cells. This suggests that apigenin induces apoptosis through p53-dependent pathway. Apigenin also reduced the expression of phospho-JAK1 and phospho-STAT3 and decreased STAT3-dependent luciferase reporter gene activity in MCF-7 vec and MCF-7 HER2 cells. Apigenin decreased the phosphorylation level of IκBα in the cytosol, and abrogated the nuclear translocation of p65 within the nucleus suggesting that it blocks the activation of NFκB signaling pathway in MCF-7 vec and MCF-7 HER2 cells. Our study indicates that apigenin could be a potential useful compound to prevent or treat HER2-overexpressing breast cancer. 相似文献
2.
G. E. Morozevich N. I. Kozlova O. Y. Susova A. Y. Lupatov A. E. Berman 《Biochemistry. Biokhimii?a》2017,82(9):1017-1024
In MCF-7 human breast carcinoma cells, α5β1 integrin hyperexpression, which was accomplished by transduction of a full-length α5 integrin cDNA, increased by about 50-70% the number of cells, survived during 48-72 h cell treatment with doxorubicin. Up-regulation of α5β1 reduced the level of the apoptogenic p53 protein and p21 cell cycle inhibitor, but enhanced the activity of Akt and mTOR protein kinases. In addition to these findings, we observed a significant decrease in the activity of both isoforms of phosphokinase Erk1/2, which is known to play a key role in cell viability pathways, including pathways alleviating stress damages caused by distinct antitumor drugs. Diminished Erk activity accompanying the rise of drug resistance can be explained by an “atypical” function of this kinase, which, in the cells studied, promotes an enhanced rather than reduced sensitivity to doxorubicin. To verify this suggestion, the effect of a specific Erk inhibitor, PD98059, on the resistance to doxorubicin of control and α5 cDNA-transduced MCF-7 cells was investigated. The data showed that suppression of Erk activity increased the resistance of control cells (transduced with an “empty” vector) to a level higher than that demonstrated by the α5 cDNA-transduced cells. The highest level of resistance was observed in α5β1trancduced cells treated with PD98059. Akt and mTOR kinase inhibitors had little if any effect on doxorubicin resistance of α5 cDNA-transduced MCF-7 cells. The data show for the first time that integrin α5β1 can stimulate drug resistance of tumor cells through a mechanism based on the inhibition of protein kinase Erk. From a more general view, the results of this investigation suggest that signal protein kinases can perform in tumor cells “non-canonical” functions, opposite to those, which are the basis for using kinase inhibitors in targeted cancer therapy. It follows that if a protein kinase is supposed to be used as a target for such therapy, it is important to explore its features in the particular tumor prior to the onset of treatment. 相似文献
3.
4.
5.
Kubota R Numaguchi Y Ishii M Niwa M Okumura K Naruse K Murohara T 《Biochemical and biophysical research communications》2010,402(2):396-401
Aminopeptidase A (APA; EC 3.4.11.7) is a transmembrane metalloprotease with several functions in tumor angiogenesis. To investigate the role of APA in the process of ischemia-induced angiogenesis, we evaluated the cellular angiogenic responses under hypoxic conditions and the process of perfusion recovery in the hindlimb ischemia model of APA-deficient (APA-KO; C57Bl6/J strain) mice.Western blotting of endothelial cells (ECs) isolated from the aorta of APA-KO mice revealed that the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein in response to hypoxic challenge was blunted. Regarding the proteasomal ubiquitination, a proteasome inhibitor MG-132 restored the reduced accumulation of HIF-1α in ECs from APA-KO mice similar to control mice under hypoxic conditions. These were associated with decreased growth factor secretion and capillary formation in APA-KO mice. In the hindlimb ischemia model, perfusion recovery in APA-KO mice was decreased in accordance with a significantly lower capillary density at 2 weeks. Regarding vasculogenesis, no differences were observed in cell populations and distribution patterns between wild type and APA-KO mice in relation to endothelial progenitor cells.Our results suggested that Ischemia-induced angiogenesis is impaired in APA-KO mice partly through decreased HIF-1α stability by proteasomal degradation and subsequent suppression of HIF-1α-driven target protein expression such as growth factors. APA is a functional target for ischemia-induced angiogenesis. 相似文献
6.
Capietto AH Martinet L Fournié JJ 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(2):1031-1038
One fourth of women with HER-2(+) metastatic breast carcinoma are treated with a combination regimen with trastuzumab, but the frequent resistance to this Ab requires definition of new means to improve its bioactivity. The mechanisms of action of trastuzumab involve several pathways including Ab-dependent cellular cytotoxicity. Because human γδ T lymphocytes mediate Ab-dependent cellular cytotoxicity and can be activated further by phosphoantigens, these cells are prone to improve the efficacy of Abs, as recently demonstrated for CD20(+) B cell lymphomas. Whether this concept applies as well with carcinomas remained to be demonstrated in vivo, however. In this study, we asked whether a combination of trastuzumab and phosphoantigen-stimulated γδ lymphocytes increases the efficacy of trastuzumab against HER-2(+) breast carcinoma cell lines in vivo. We report that repeated infusions of this combination had a better efficacy than that of trastuzumab alone against HER-2(+) mammary carcinoma xenografts in mice. In these models, reduction of tumor growth was observed together with trastuzumab opsonization of HER-2(+) cells and tumor infiltration by γδ lymphocytes. In addition in humans, the mammary carcinomas of 27 of 30 patients showed significant γδ T cell infiltrates. Altogether, these findings indicate that combination of trastuzumab and stimulated γδ cells represents a new strategy to improve the efficacy of Herceptin (trastuzumab) in HER-2(+) breast cancer. 相似文献
7.
Coker-Gurkan Ajda Can Esin Sahin Semanur Obakan-Yerlikaya Pınar Arisan Elif-Damla 《Molecular biology reports》2021,48(6):5233-5247
Molecular Biology Reports - The constitutive activation of STAT3 through receptor tyrosine kinases triggered breast cancer cell growth and invasion-metastasis. Atiprimod impacts anti-proliferative,... 相似文献
8.
Li H Sorenson AL Poczobutt J Amin J Joyal T Sullivan T Crossno JT Weiser-Evans MC Nemenoff RA 《PloS one》2011,6(12):e28133
Activation of peroxisome proliferator-activated receptor-γ (PPARγ) inhibits growth of cancer cells including non-small cell lung cancer (NSCLC). Clinically, use of thiazolidinediones, which are pharmacological activators of PPARγ is associated with a lower risk of developing lung cancer. However, the role of this pathway in lung cancer metastasis has not been examined well. The systemic effect of pioglitazone was examined in two models of lung cancer metastasis in immune-competent mice. In an orthotopic model, murine lung cancer cells implanted into the lungs of syngeneic mice metastasized to the liver and brain. As a second model, cancer cells injected subcutaneously metastasized to the lung. In both models systemic administration of pioglitazone increased the rate of metastasis. Examination of tissues from the orthotopic model demonstrated increased numbers of arginase I-positive macrophages in tumors from pioglitazone-treated animals. In co-culture experiments of cancer cells with bone marrow-derived macrophages, pioglitazone promoted arginase I expression in macrophages and this was dependent on the expression of PPARγ in the macrophages. To assess the contribution of PPARγ in macrophages to cancer progression, experiments were performed in bone marrow-transplanted animals receiving bone marrow from Lys-M-Cre+/PPARγ(flox/flox) mice, in which PPARγ is deleted specifically in myeloid cells (PPARγ-Mac(neg)), or control PPARγ(flox/flox) mice. In both models, mice receiving PPARγ-Mac(neg) bone marrow had a marked decrease in secondary tumors which was not significantly altered by treatment with pioglitazone. This was associated with decreased numbers of arginase I-positive cells in the lung. These data support a model in which activation of PPARγ may have opposing effects on tumor progression, with anti-tumorigenic effects on cancer cells, but pro-tumorigenic effects on cells of the microenvironment, specifically myeloid cells. 相似文献
9.
Rathinavelu A Narasimhan M Muthumani P 《Journal of cellular and molecular medicine》2012,16(8):1750-1757
On the basis of increasing roles for HDM2 oncoprotein in cancer growth and progression, we speculated that HDM2 might play a major role in hypoxia-induced metastatic process. For verification of this hypothesis, wild-type LNCaP prostate cancer cells and HDM2 transfected LNCaP-MST (HDM2 stably transfected) cells were studied. The data obtained from our experiments revealed that the HDM2 transfected LNCaP-MST cells possessed an ability to multiply rapidly and show distinct morphological features compared to non-transfected LNCaP cells. During exposures to hypoxia HDM2 expression in the LNCaP and LNCaP-MST cells was significantly higher compared to the normoxic levels. The LNCaP-MST cells also expressed higher levels of HIF-1α (hypoxia-inducible factor-1α) and p-STAT3 even under the normoxic conditions compared to the non-transfected cells. The HIF-1α and p-STAT3 expressions were increased several fold when the cells were subjected to hypoxic conditions. The HIF-1α and p-STAT3 protein expressions observed in HDM2 transfected LNCaP-MST cells were 20 and 15 folds higher, respectively, compared to the non-transfected wild-type LNCaP cells. These results demonstrate that HDM2 may have an important regulatory role in mediating the HIF-1α and p-STAT3 protein expression during both normoxic and hypoxic conditions. Furthermore, the vascular endothelial growth factor (VEGF) expression that is typically regulated by HIF-1α and p-STAT3 was also increased significantly by 136% (P < 0.01) after HDM2 transfection. The overall results point towards a novel ability of HDM2 in regulating HIF-1α and p-STAT3 levels even in normoxic conditions that eventually lead to an up-regulation of VEGF expression. 相似文献
10.
Wang Hongliang Tang Feng Bian Erbao Zhang Yile Ji Xinghu Yang Zhihao Zhao Bing 《Molecular biology reports》2020,47(1):433-441
Molecular Biology Reports - Glioma is the most aggressive primary brain tumor. We have previously provided evidence that IFITM3 promoted glioma cells migration. However, the mechanism of how IFITM3... 相似文献
11.
Xianchun Sun Yan Zhang Bingshu Li 《Journal of receptor and signal transduction research》2013,33(4):352-358
AbstractThe metastasis-associated gene 1 (MTA1) has previously been recognized as an oncogene, and abnormal MTA1 expression has been related to progression of numerous cancer types to the metastasis stage. However, the function of MTA1 in the regulation of pancreatic cancer progression and metastasis remains unclear. Western blot analysis was adopted to determine the expression of MTA1 in pancreatic cancer tissues and corresponding near normal tissues. Steady clone with MTA1-overexpression and MTA1-inhibitionweregenerated via lentivirus technology in BxPc-3 cells. Transwell assay was carried out for detecting the invasion of pancreatic cancer cells. The migration activity was assessed using the wound scratch assay. The effect of MTA1 in pancreatic cancer was evaluated in the mice xenografts. Western blot analysis was employed to determine the expression of hypoxia inducible factor-α (HIF-α) and vascular endothelial growth factor (VEGF) in vitro and in vivo. We observed that MTA1 overexpression enhanced migration and invasion ability of pancreatic cancer cells in vitro and increased HIF-α and VEGF protein levels in vitro and in vivo. MTA1 inhibition had the opposite effects. MTA1 protein level was positively related to HIF-α and VEGF protein levels. These results indicated that MTA1 potentially promoted pancreatic cancer metastasis via HIF-α/VEGF pathway. This research supplies a new molecular mechanism for MTA1 in the pancreatic cancer progression and metastasis. MTA1 may be an effective therapy target in pancreatic cancer. 相似文献
12.
13.
14.
Ruan SQ Wang ZH Wang SW Fu ZX Xu KL Li DB Zhang SZ 《Biochemical and biophysical research communications》2012,420(2):385-390
Estrogen receptor (ER)-negative breast cancer cells are probably more aggressive with larger metastatic potential than ER-positive cells. Loss of ER in recurrent breast cancer is associated with poor response to endocrine therapy. G protein-coupled receptor 30 (GPR30) is expressed in half of ER-negative breast cancers. Tumor cell-derived heregulin-β1 (HRG-β1) is also found mainly in ER-negative cancer. In SkBr3 breast cancer cells that lack ER but express GPR30, HRG-β1 upregulates mRNA and protein levels of GPR30 by promoting ErbB2-ErbB3 heterodimerization and activating the downstream MAPK-ERK signaling pathway. Moreover, GPR30 boosts HRG-β1-induced migration and invasion of SkBr3 cells after combinative treatment with E2, 4-hydroxy-tamoxifen or the specific GPR30 agonist G-1, which are blocked by the specific GPR30 antagonist G-15 or the transfection with the small interfering RNA for GPR30. The ErbB2 inhibitor AG825 and the MEK1/2 inhibitor U0126 also partly inhibit the enhanced migration and invasion. Therefore, HRG-β1-induced migration and invasion partly depend on the upregulation of GPR30 expression through activation of the ErbB2-ERK pathway in SkBr3 cells. The results of this study indicate that the crosstalk between GPR30 and HRGs signaling is important for endocrine therapy resistance and may provide a new therapeutic way to treat breast cancer. 相似文献
15.
Autophagy facilitates the progression of ERα-positive breast cancer cells to antiestrogen resistance
《Autophagy》2013,9(3):400-403
A major impediment to the successful treatment of estrogen receptor α (ERα)-positive breast cancer is the development of antiestrogen resistance. Tamoxifen, the most commonly used antiestrogen, exerts its pharmacological action by binding to ERα and blocking the growth- promoting action of estrogen-bound ERα in breast cancer cells. Tamoxifen treatment primarily induces cytostasis (growth arrest) and the surviving breast cancer cells commonly acquire tamoxifen resistance. Numerous clinically-relevant mechanisms of acquired antiestrogen resistance have been identified by in vitro studies. Our recent studies (Mol Cancer Ther 2008: 7:2977-87) now demonstrate that autophagy (also referred to as macroautophagy) is critical to the development of antiestrogen resistance. Under conditions of compromised autophagy, including treatments with pharmacological inhibitors and RNAi targeting of the beclin 1 gene, the cytotoxicity (death-inducing effects) of the antiestrogen 4-hydroxytamoxifen (4-OHT) was significantly increased. 4-OHT is an active metabolite of tamoxifen commonly used for in vitro studies. A step-wise drug selection protocol, using 4-OHT as the selecting drug, established antiestrogen-resistant breast cancer cell lines. Analysis of a representative resistant cell line showed an increased ability of the cells to sustain high levels of antiestrogen-induced autophagy without progression to death. Importantly, blockade of autophagosome function in the 4-OHT-treated, antiestrogen-resistant cells induced a robust death response. These data provide strong evidence that autophagy is a key mechanism of cell survival during antiestrogen challenge and progression to antiestrogen resistance. We discuss the potential benefit of blocking autophagosome function to significantly reduce the emergence of antiestrogen-resistant breast cancer cells. 相似文献
16.
Yongfeng He Hangun Kim Taeyong Ryu Youra Kang Jeong-Ae Kim Bo-Hyun Kim Jae-Hyuk Lee Keonwook Kang Qun Lu Kwonseop Kim 《FEBS letters》2013,587(2):193-199
This study revealed that CWR22Rv-1 cells overexpressing δ-catenin display bigger tumor formation and higher angiogenic potentials than their matched control cells in the CAM assay. In addition, δ-catenin overexpression in CWR22Rv-1 cells results in increased hypoxia-inducible factor 1-alpha (HIF-1α and vascular endothelial growth factor (VEGF) expression. Furthermore, δ-catenin overexpression was found to enhance nuclear distribution of both β-catenin and HIF-1α in hypoxic condition, which is diminished by knockdown of δ-catenin. Our current study adds novel evidence regarding contribution of δ-catenin to the progression of prostate cancer. 相似文献
17.
Ming-Cheng Chen Rathinasamy Baskaran Nien-Hung Lee Hsi-Hsien Hsu Tsung-Jung Ho Chuan-Chou Tu Yueh-Min Lin Vijaya Padma Viswanadha Wei-Wen Kuo Chih-Yang Huang 《Journal of cellular physiology》2019,234(7):11822-11834
Cancer stem cells (CSCs) exist in colon cancer and exhibit characteristics of stem cells which are due to lineages of tissues where they arise. Epithelial to mesenchymal transition (EMT)-undergoing cancer cells display CSC properties and therapeutic resistance. Cancer and stromal cells comprise of a tumor microenvironment. One way the two populations communicate with each other is to secret CXC ligands (CXCLs). CXCLs are capable of causing chemotaxis of specific types of stromal cells and control angiogenesis. Double immunofluorescence, western blot analysis, and colony-formation assay were carried out to compare parental and CPT-11-resistant LoVo cells. CPT-11-R LoVo colon cancer cells showed increased expression of CXCL1, CXCL2, CXCL3, and CXCL8. They displayed significantly increased intracellular protein levels of CXCL2 and CXCR2. CPT-11-R LoVo cells showed significantly elevated expression in aldehyde dehydrogenase 1 (ALDH1), cluster of differentiation 24 (CD24), cluster of differentiation 44 (CD44), and epithelial cell adhesion molecule (EpCAM). CXCL2 knockdown by short hairpin RNA resulted in reduced expression of CSC proteins, cyclins, EMT markers, G proteins, and matrix metalloproteinases (MMPs). Finally, Gαi-2 was found to promote expression of CSC genes and tumorigenesis which were more apparent in the resistant cells. In addition, Gαq/11 showed a similar pattern with exceptions of EpCAM and MMP9. Therefore, CXCL2–CXCR2 axis mediates through Gαi-2 and Gαq/11 to promote tumorigenesis and contributes to CSC properties of CPT-11-R LoVo cells. 相似文献
18.
Ruan Q Han S Jiang WG Boulton ME Chen ZJ Law BK Cai J 《Molecular cancer research : MCR》2011,9(12):1632-1643
Effective inhibition of angiogenesis targeting the tumor endothelial cells requires identification of key cellular and molecular mechanisms associated with survival of vasculatures within the tumor microenvironment. Intracellular autocrine (intracrine) VEGF production by endothelial cells plays a critical role on the vasculature homeostasis. In vitro breast cancer cell-stimulated activation of the unfolded protein response (UPR) of the endothelial cells contributes to maintenance of the intracrine VEGF levels in the endothelial cells through the upregulation of a previous undescribed downstream effector- αB-crystallin (CRYAB). siRNA-mediated knockdown of two major UPR proteins-inositol requiring kinase 1 and ATF6, led to attenuated CRYAB expression of the endothelial cells. Finally, inhibition of CRYAB blocked the breast cancer cell-stimulated increase in the endogenous VEGF levels of the endothelial cells. A VEGF limited proteolysis assay further revealed that CRYAB protected VEGF for proteolytic degradation. Here, we report that the molecular chaperone-CRYAB was significantly increased and colocalized with tumor vessels in a breast cancer xenograft. Specifically, neutralization of VEGF induced higher levels of CRYAB expression in the endothelial cells cocultured with MDA-MB-231 or the breast cancer xenograft with a significant survival benefit. However, knockdown of CRYAB had a greater inhibitory effect on endothelial survival. These findings underscore the importance of defining a role for intracrine VEGF signaling in sustaining aberrant tumor angiogenesis and strongly implicate UPR/CRYAB as dichotomous parts of a crucial regulation pathway for maintaining intracrine VEGF signaling. 相似文献
19.
20.
Yuan G Qian L Song L Shi M Li D Yu M Hu M Shen B Guo N 《Molecular and cellular biochemistry》2008,318(1-2):73-79
It has been reported that HER2 level is strongly correlated with the expression of MMP-7 in some carcinomas. HER2 is a preferred heterodimerization partner of EGFR, HER3, and HER4. HER2 overexpression is believed to enhance the signaling from these receptors in response to binding of their specific ligands. In this study, we show that heregulin-beta (HRG-beta) stimulation remarkably induced MMP-7 promoter activity and significantly enhanced the expression and activity of MMP-7 in MCF-7 cells overexpressing HER2. The expression of c-Jun and c-Fos and the level of the phosphorylated c-Jun were markedly increased after HRG-beta treatment in MCF-7/HER2 cells. Increased MMP-7 promoter activity was observed in MCF-7/c-Jun cells. The activity of the MMP-7 promoter induced by HRG-beta in MCF-7/HER2 cells could be inhibited by a dominant negative c-Jun mutant TAM67 and by the mutagenesis of the AP-1 site. c-Jun binding to MMP-7 promoter was confirmed by ChIP assays. The data indicate a close link among HRG-beta stimulation, HER signaling, and AP-1 activation. Our data suggest that HRG-beta-induced MMP-7 expression was regulated by HER2-mediated AP-1 activation in MCF-7 cells. 相似文献