首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Transforming growth factor (TGF)-β signaling pathway, may act both as a tumor suppressor and as a tumor promoter in pancreatic cancer, depending on tumor stage and cellular context. TGF-β pathway has been under intensive investigation as a potential therapeutic target in the treatment of cancer. We hypothesized a correlation between TGF-βR2/SMAD4 expression in the tumor, plasma TGF-β1 ligand level, genetic variation in TGF-B pathway and prognosis of pancreatic cancer.

Method

We examined TGF-βR2 and SMAD4 protein expression in biopsy or surgical samples from 91 patients with pancreatic ductal adenocarcinoma (PDAC) using immunohistochemistry. Plasma level of TGF-β1 was measured in 644 patients with PDAC using ELISA. Twenty-eight single nucleotide polymorphisms (SNP) of the TGF-β1, TGF-β2, TGF-β3, TGF-βR1, TGF-βR2, and SMAD4 genes were determined in 1636 patients with PDAC using the Sequenom method. Correlation between protein expression in the tumor, plasma TGF-β1 level, and genotypes with overall survival (OS) was evaluated with Cox proportional regression models.

Results

The expression level of TGF-βR2 and SMAD4 as an independent marker was not associated with OS. However, patients with both low nuclear staining of TGF-βR2 and high nuclear staining of SMAD4 may have better survival (P = 0.06). The mean and median level of TGF-β1 was 15.44 (SD: 10.99) and 12.61 (interquartile range: 8.31 to 19.04) ng/ml respectively. Patients with advanced disease and in the upper quartile range of TGF-β1 level had significantly reduced survival than those with low levels (P = 0.02). A significant association of SMAD4 SNP rs113545983 with overall survival was observed (P<0.0001).

Conclusion

Our data provides valuable baseline information regarding the TGF-β pathway in pancreatic cancer, which can be utilized in targeted therapy clinical trials. High TGF-β1 plasma level, SMAD4 SNP or TGF-βR2/SMAD4 tumor protein expression may suggest a dependence on this pathway in patients with advanced pancreatic cancer.  相似文献   

2.
Transforming growth factor- (TGF-) isoform expression by odontoblasts leads to their sequestration within the dentine matrix, from where they may be released during caries and participate in the reparative processes. Two receptor types for TGF- have been implicated in TGF- induced signalling. The aim of this study was to characterise immunohistochemically the expression of these receptors in sound and carious human teeth to facilitate our understanding of the ability of these cells to respond to TGF- stimulation. Sound and carious human teeth were routinely processed and paraffin sections stained for TGF- receptors I and II, using the StrAviGen immunoperoxidase method. Strong specific staining for both receptor types was observed in the odontoblasts of healthy teeth with the greatest intensity seen with receptor I. Staining of weaker intensity was also observed for both receptors in the underlying cell rich area and pulp core. Similar patterns of staining were observed within carious tissues. We conclude that odontoblasts and other cells of the pulp of mature human molar teeth show the presence of both TGF- receptors I and II in health and disease with odontoblasts showing the strongest expression. Such findings may be important in the response of these cells to tissue injury.  相似文献   

3.
《Journal of molecular biology》2019,431(15):2644-2654
Transforming growth factor beta (TGF-β) is an important growth factor that plays essential roles in regulating tissue development and homeostasis. Dysfunction of TGF-β signaling is a hallmark of many human diseases. Therefore, targeting TGF-β signaling presents broad therapeutic potential. Since the discovery of the TGF-β ligand, a collection of engineered signaling proteins have been developed to probe and manipulate TGF-β signaling responses. In this review, we highlight recent progress in the engineering of TGF-β signaling for different applications and discuss how molecular engineering approaches can advance our understanding of this important pathway. In addition, we provide a future outlook on the opportunities and challenges in the engineering of the TGF-β signaling pathway from a quantitative perspective.  相似文献   

4.

Background

Most patients with advanced breast cancer develop bone metastases, which cause pain, hypercalcemia, fractures, nerve compression and paralysis. Chemotherapy causes further bone loss, and bone-specific treatments are only palliative. Multiple tumor-secreted factors act on the bone microenvironment to drive a feed-forward cycle of tumor growth. Effective treatment requires inhibiting upstream regulators of groups of prometastatic factors. Two central regulators are hypoxia and transforming growth factor (TGF)- β. We asked whether hypoxia (via HIF-1α) and TGF-β signaling promote bone metastases independently or synergistically, and we tested molecular versus pharmacological inhibition strategies in an animal model.

Methodology/Principal Findings

We analyzed interactions between HIF-1α and TGF-β pathways in MDA-MB-231 breast cancer cells. Only vascular endothelial growth factor (VEGF) and the CXC chemokine receptor 4 (CXCR4), of 16 genes tested, were additively increased by both TGF-β and hypoxia, with effects on the proximal promoters. We inhibited HIF-1α and TGF-β pathways in tumor cells by shRNA and dominant negative receptor approaches. Inhibition of either pathway decreased bone metastasis, with no further effect of double blockade. We tested pharmacologic inhibitors of the pathways, which target both the tumor and the bone microenvironment. Unlike molecular blockade, combined drug treatment decreased bone metastases more than either alone, with effects on bone to decrease osteoclastic bone resorption and increase osteoblast activity, in addition to actions on tumor cells.

Conclusions/Significance

Hypoxia and TGF-β signaling in parallel drive tumor bone metastases and regulate a common set of tumor genes. In contrast, small molecule inhibitors, by acting on both tumor cells and the bone microenvironment, additively decrease tumor burden, while improving skeletal quality. Our studies suggest that inhibitors of HIF-1α and TGF-β may improve treatment of bone metastases and increase survival.  相似文献   

5.

Background

Immunosuppressant cyclosporine-A induces gingival hyperplasia, which is characterized by increased fibroblast proliferation and overproduction of extracellular matrix components and regulated by transforming growth factor-beta (TGF-β). The TGF-β and Sonic hedgehog (Shh) pathways both mediate cell proliferation. Crosstalk between these pathways in cancer has recently been proposed, but the hierarchical pattern of this crosstalk remains unclear. In normal fibroblasts, a TGF-β-stimulating Shh pattern was observed in induced fibrosis. However, Shh pathway involvement in cyclosporine-enhanced gingival proliferation and the existence of crosstalk with the TGF-β pathway remain unclear.

Methodology/Principal Findings

Cyclosporine enhanced mRNA and protein levels of TGF-β and Shh in human gingival fibroblasts (RT-PCR and western blotting). A TGF-β pathway inhibitor mitigated cyclosporine-enhanced cell proliferation and an Shh pathway inhibitor attenuated cyclosporine-enhanced proliferation in fibroblasts (MTS assay and/or RT-PCR of PCNA). Exogenous TGF-β increased Shh expression; however, exogenous Shh did not alter TGF-β expression. The TGF-β pathway inhibitor mitigated cyclosporine-upregulated Shh expression, but the Shh pathway inhibitor did not alter cyclosporine-upregulated TGF-β expression.

Conclusions/Significance

The TGF-β and Shh pathways mediate cyclosporine-enhanced gingival fibroblast proliferation. Exogenous TGF-β increased Shh expression, and inhibition of TGF-β signaling abrogated the cyclosporine-induced upregulation of Shh expression; however, TGF-β expression appeared unchanged by enhanced or inhibited Shh signaling. This is the first study demonstrating the role of Shh in cyclosporine-enhanced gingival cell proliferation; moreover, it defines a hierarchical crosstalk pattern in which TGF-β regulates Shh in gingival fibroblasts. Understanding the regulation of cyclosporine-related Shh and TGF-β signaling and crosstalk in gingival overgrowth will clarify the mechanism of cyclosporine-induced gingival enlargement and help develop targeted therapeutics for blocking these pathways, which can be applied in pre-clinical and clinical settings.  相似文献   

6.
7.
Transforming growth factor-β1 (TGF-β) was first implicated in mammary epithelial development by Daniel and Silberstein in 1987 and in breast cancer cells and hormone resistance by Lippman and colleagues in 1988. TGF-β is critically important for mammary morphogenesis and secretory function through specific regulation of epithelial proliferation, apoptosis, and extracellular matrix. Differential TGF-β effects on distinct cell types are compounded by regulation at multiple levels and the influence of context on cellular responses. Studies using controlled expression and conditional-deletion mouse models underscore the complexity of TGF-β biology across the cycle of mammary development and differentiation. Early loss of TGF-β growth regulation in breast cancer evolves into fundamental deregulation that mediates cell interactions and phenotypes driving invasive disease. Two outstanding issues are to understand the mechanisms of biological control in situ and the circumstances by which TGF-β regulation is subverted in neoplastic progression.The discovery of a “transforming growth factor” in normal tissue and serum in the early 1980s rapidly led to the identification of a large family of polypeptides whose action is involved in all aspects of development, homeostasis, and cancer (Moses and Roberts 2008). The activity of transforming growth factor-β1 (TGF-β) was first implicated in mammary epithelial development in 1987 by a canonical experiment by Daniel and Silberstein. Pellets containing TGF-β implanted into mouse mammary gland during ductal morphogenesis were shown to induce rapid regression of advancing endbuds, which was among the first demonstration of its potent inhibitory, rather than transforming, activity (Silberstein and Daniel 1987). However, soon after, Lippman and colleagues showed that TGF-β was produced by breast cancer cells, which in turn contributed to their hormone resistance (Knabbe et al. 1987). These two diametrically opposed actions have continued to fascinate those studying its sundry roles in mammary biology and breast cancer. After nearly a quarter century, this brief article underscores the major two themes in mammary biology: Although TGF-β orchestrates tissue composition and critical controls during mammary development, its subversion during cancer progressively undermines homeostasis and actively drives malignancy.  相似文献   

8.
Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the Doc resistance were screened by miRNA microarray. We selected 5 upregulated miRNAs (has-miR-3646, has-miR-3658, has-miR-4438, has-miR-1246, and has-miR-574-3p) from the results of microarray for RT-qPCR validation. The results showed that expression level of miR-3646 in MDA-MB-231/Doc cells was significantly higher than in MDA-MB-231/S cells. Compared to MCF-7/S cells, miR-3646 expression was up-regulated in MCF-7/Doc cells. Further studies revealed that transfection of miR-3646 mimics into MDA-MB-231/S or MCF-7/S cells remarkably increased their drug resistance, in contrast, transfection of miR-3646 inhibitors into MDA-MB-231/Doc or MCF-7/Doc cells resulted in significant reduction of the drug resistance. By the pathway enrichment analyses for miR-3646, we found that GSK-3β/β-catenin signaling pathway was a significant pathway, in which GSK-3β was an essential member. RT-qPCR and Western blot results demonstrated that miR-3646 could regulate GSK-3β mRNA and protein expressions. Furthermore, a marked increase of both nuclear and cytoplasmic β-catenin expressions (with phosphorylated-β-catenin decrease) was observed in MDA-MB-231/Doc cells compared with MDA-MB-231/S cells, and their expression were positively related to miR-3646 and negatively correlated with GSK-3β. Taken together, our results suggest that miR-3646-mediated Doc resistance of breast cancer cells maybe, at least in part, through suppressing expression of GSK-3β and resultantly activating GSK-3β/β-catenin signaling pathway.  相似文献   

9.
We investigated blocking the TGF-β signaling pathway in HCC using two small molecule inhibitors (LY2157299, LY2109761) and a neutralizing humanized antibody (D10) against TGF-βRII. LY2157299 and LY2109761 inhibited HCC cell migration on Laminin-5, Fibronectin, Vitronectin, Fibrinogen and Collagen-I and de novo phosphorylation of pSMAD2. LY2157299 inhibited HCC migration and cell growth independently of the expression levels of TGF-βRII. In contrast to LY2157299, D10 showed a reduction in pSMAD2 only after a short exposure. This study supports the use of LY2157299 in clinical trials, and presents new insights into TGF-β receptor cycling in cancer cells.  相似文献   

10.
Thyroid hormone receptor (TR) mediates the crucial effects of the thyroid hormone (T3) on cellular growth, development, and differentiation. Decreased expression or inactivating somatic mutations of TRs have been found in human cancers of the liver, breast, lung, and thyroid. The mechanisms of TR-associated carcinogenesis are still not clear. To establish the function of TRβ in thyroid cancer cell proliferation, we constructed a recombinant adenovirus vector, AdTRβ, which expresses human TRβ1 cDNA. Thyroid cancer cell lines in which TRβ protein levels were significantly decreased as compared to intact thyroid tissues were infected with AdTRβ and the function of TRβ on cell proliferation and migration was analyzed. Ligand-bound TRβ induced HDAC1 and HDAC3 dissociation from, and histone acetylation associated with the RhoB promoter and enhanced the expression of RhoB mRNA and protein. In AdTRβ-infected cells, T3 and farnesyl transferase inhibitor (FTI)-treatment induced the distribution of RhoB on the cell membrane and enhanced the abundance of active GTP-bound RhoB. This RhoB protein led to p21-associated cell-cycle arrest in the G0/G1 phase, following inhibition of cell proliferation and invasion. Conversely, lowering cellular RhoB by small interfering RNA knockdown in AdTRβ-infected cells led to downregulation of p21 and inhibited cell-cycle arrest. The growth of BHP18-21v tumor xenografts in vivo was significantly inhibited by AdTRβ injection with FTIs-treatment, as compared to control virus-injected tumors. This novel signaling pathway triggered by ligand-bound TRβ provides insight into possible mechanisms of proliferation and invasion of thyroid cancer and may provide new therapeutic targets for thyroid cancers.  相似文献   

11.
12.
Trophic coupling between cerebral endothelium and their neighboring cells is required for the development and maintenance of blood-brain barrier (BBB) function. Here we report that oligodendrocyte precursor cells (OPCs) secrete soluble factor TGF-β1 to support BBB integrity. Firstly, we prepared conditioned media from OPC cultures and added them to cerebral endothelial cultures. Our pharmacological experiments showed that OPC-conditioned media increased expressions of tight-junction proteins and decreased in vitro BBB permeability by activating TGB-β-receptor-MEK/ERK signaling pathway. Secondly, our immuno-electron microscopic observation revealed that in neonatal mouse brains, OPCs attach to cerebral endothelial cells via basal lamina. And finally, we developed a novel transgenic mouse line that TGF-β1 is knocked down specifically in OPCs. Neonates of these OPC-specific TGF-β1 deficient mice (OPC-specific TGF-β1 partial KO mice: PdgfraCre/Tgfb1flox/wt mice or OPC-specific TGF-β1 total KO mice: PdgfraCre/Tgfb1flox/flox mice) exhibited cerebral hemorrhage and loss of BBB function. Taken together, our current study demonstrates that OPCs increase BBB tightness by upregulating tight junction proteins via TGF-β signaling. Although astrocytes and pericytes are well-known regulators of BBB maturation and maintenance, these findings indicate that OPCs also play a pivotal role in promoting BBB integrity.  相似文献   

13.
Intrauterine adhesions (IUA) are a significant cause of menstrual disturbance and infertility, but their pathogenesis still remains unclear. Here, we investigated the expression of TGF-β and CCN2 in IUA endometrial tissue by immunohistochemistry, western blotting and qRT-PCR assays, and found the expression of TGF-β and CCN2 in the endometrial tissue of IUA was significantly increased compared to normal endometrium and uterine septum (P<0.01), suggesting that TGF-β and CCN2 may play an important role in the formation of IUA. Moreover, the activity of the NF-κB signaling pathway in endometrial tissue of IUA was also significantly enhanced compared to normal endometrial and uterine septum (P<0.01) and positively correlated with the expression of TGF-β and CCN2, which suggested that TGF-β and CCN2 expression may be involved in the NF-κB signaling pathway. Blocking the NF-κB signaling pathway using SN50 resulted in the reduced expression of TGF-β in RL95-2 cells, which confirmed the association of the NF-κB signaling pathway and TGF-β in endometrial cells. Additionally, the expression of TGF-β and CCN2 was associated with IUA recurrence, which provides a potential prognostic indictor for IUA. Together, these results demonstrated that TGF-β and CCN2 play an important role in IUA formation, whose mechanism was associated with the activation of the NF-κB signaling pathway.  相似文献   

14.
Post-operative adhesions are a critical problem in pelvic and abdominal surgery despite a multitude of studies dedicated to finding modalities to prevent their occurrence. Ghrelin administration promotes an anti-fibrotic response in a surgical mouse model of adhesion-induction, but the mechanisms mediating this effect have not been established. In the current study, the molecular mechanisms that underlie the anti-adhesion effect of ghrelin were investigated. Post-surgical adhesions were experimentally created in C57BL/6 wild-type mice via a combination of ischemic peritoneal buttons and cecal multiple abrasions. Ghrelin or saline intraperitoneal injections were given twice daily from two days before surgery to selected time points post-surgically to assess the phenotypic and molecular effects of treatment (1 day (n = 20), 4 days (n = 20) and 20 days (n = 40) after surgery). Endpoints included the scoring of adhesions and gene and protein expression analysis of pro-fibrogenic factors conducted on peritoneal ischemic tissue by quantitative PCR and Western blot. Ghrelin administration significantly reduced post-surgical adhesions and down-regulated pro-inflammatory gene and protein expression, including Tgfb3 and Tgfbr2. The up-regulation of inhibitory proteins Smad6 and Smad7 confirmed the ghrelin-induced blockage of TGF-β signaling. Ghrelin is a candidate therapeutic drug for post-operative adhesion prevention, inhibiting inflammatory responses via blockage of the TGF-β signaling pathway at the onset of surgery before the occurrence of the granulation-remodeling phase.  相似文献   

15.

Purpose

Brain metastasis (BM) from non-small cell lung cancer (NSCLC) is relatively common, but identifying which patients will develop brain metastasis has been problematic. We hypothesized that genotype variants in the TGF-β signaling pathway could be a predictive biomarker of brain metastasis.

Patients and Methods

We genotyped 33 SNPs from 13 genes in the TGF-β signaling pathway and evaluated their associations with brain metastasis risk by using DNA from blood samples from 161 patients with NSCLC. Kaplan-Meier analysis was used to assess brain metastasis risk; Cox hazard analyses were used to evaluate the effects of various patient and disease characteristics on the risk of brain metastasis.

Results

The median age of the 116 men and 45 women in the study was 58 years; 62 (39%) had stage IIIB or IV disease. Within 24 months after initial diagnosis of lung cancer, brain metastasis was found in 60 patients (37%). Of these 60 patients, 16 had presented with BM at diagnosis. Multivariate analysis showed the GG genotype of SMAD6: rs12913975 and TT genotype of INHBC: rs4760259 to be associated with a significantly higher risk of brain metastasis at 24 months follow-up (hazard ratio [HR] 2.540, 95% confidence interval [CI] 1.204–5.359, P = 0.014; and HR 1.885, 95% CI 1.086–3.273, P = 0.024), compared with the GA or CT/CC genotypes, respectively. When we analyzed combined subgroups, these rates showed higher for those having both the GG genotype of SMAD6: rs12913975 and the TT genotype of INHBC: rs4760259 (HR 2.353, 95% CI 1.390–3.985, P = 0.001).

Conclusions

We found the GG genotype of SMAD6: rs12913975 and TT genotype of INHBC: rs4760259 to be associated with risk of brain metastasis in patients with NSCLC. This finding, if confirmed, can help to identify patients at high risk of brain metastasis.  相似文献   

16.
Glioblastoma, the most common and aggressive primary brain tumors, carry a bleak prognosis and often recur even after standard treatment modalities. Emerging evidence suggests that deregulation of the Wnt/β-catenin/Tcf signaling pathway contributes to glioblastoma progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit tumor cell proliferation by suppressing Wnt/β-catenin/Tcf signaling in various human malignancies. In this study, we sought to inhibit Wnt/β-catenin/Tcf signaling in glioblastoma cells by the NSAIDs diclofenac and celecoxib. Both diclofenac and celecoxib significantly reduced the proliferation, colony formation and migration of human glioblastoma cells. Diclofenac and celecoxib downregulated β-catenin/Tcf reporter activity. Western and qRT-PCR analysis showed that diclofenac and celecoxib reduced the expression of β-catenin target genes Axin2, cyclin D1 and c-Myc. In addition, the cytoplasmic accumulation and nuclear translocation of β-catenin was significantly reduced following diclofenac and celecoxib treatment. Furthermore, diclofenac and celecoxib significantly increased phosphorylation of β-catenin and reduced the phosphorylation of GSK3β. These results clearly indicated that diclofenac and celecoxib are potential therapeutic agents against glioblastoma cells that act by suppressing the activation of Wnt/β-catenin/Tcf signaling.  相似文献   

17.
Human Dachshund homologue 1 (DACH1) is a major component of the Retinal Determination Gene Network. Loss of DACH1 expression was found in breast, prostate, lung, endometrial, colorectal and hepatocellular carcinoma. To explore the expression, regulation and function of DACH1 in human esophageal cancer, 11 esophageal cancer cell lines, 10 cases of normal esophageal mucosa, 51 cases of different grades of dysplasia and 104 cases of primary esophageal squamous cancer were employed. Methylation specific PCR, immunohistochemistry, western blot, flow cytometry, small interfering RNAs, colony formation techniques and xenograft mice model were used. We found that DACH1 expression was regulated by promoter region hypermethylation in esophageal cancer cell lines. 18.8% (6 of 32) of grade 1, 42.1% (8 of 19) of grade 2 and grade 3 dysplasia (ED2,3), and 61.5% (64 of 104) of esophageal cancer were methylated, but no methylation was found in 10 cases of normal esophageal mucosa. The methylation was increased in progression tendency during esophageal carcinogenesis (P<0.01). DACH1 methylation was associated with poor differentiation (P<0.05) and late tumor stage (P<0.05). Restoration of DACH1 expression inhibited cell growth and activated TGF-β signaling in KYSE150 and KYSE510 cells. DACH1 suppressed human esophageal cancer cell tumor growth in xenograft mice. In conclusion, DACH1 is frequently methylated in human esophageal cancer and methylation of DACH1 is involved in the early stage of esophageal carcinogenesis. DACH1 expression is regulated by promoter region hypermethylation. DACH1 suppresses esophageal cancer growth by activating TGF-β signaling.  相似文献   

18.
Resveratrol, a natural polyphenolic compound, is abundantly found in plant foods and has been extensively studied for its anti-cancer properties. Given the important role of CSCs (Cancer Stem Cells) in breast tumorigenesis and progression, it is worth investigating the effects of resveratrol on CSCs. The article is an attempt to investigate the effects of resveratrol on breast CSCs. Resveratrol significantly inhibits the proliferation of BCSCs (breast cancer stem-like cells) isolated from MCF-7 and SUM159, and decreased the percentage of BCSCs population, consequently reduced the size and number of mammospheres in non-adherent spherical clusters. Accordingly, the injection of resveratrol (100 mg/kg/d) in NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice effectively inhibited the growth of xenograft tumors and reduced BCSC population in tumor cells. After the reimplantation of primary tumor cells into the secondary mice for 30 d, all 6 control inoculations produced tumors, while tumor cells derived from resveratrol-treated mice only caused 1 tumor of 6 inoculations. Further studies by TEM (Transmission electron microscopy) analysis, GFP-LC3-II puncta formation assay and western blot for LC3-II, Beclin1 and Atg 7, showed that resveratrol induces autophagy in BCSCs. Moreover, resveratrol suppresses Wnt/β-catenin signaling pathway in BCSCs; over-expression of β-catenin by transfecting the plasmid markedly reduced resveratrol-induced cytotoxicity and autophagy in BCSCs. Our findings indicated that resveratrol inhibits BCSCs and induces autophagy via suppressing Wnt/β-catenin signaling pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号