首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modification in the Golgi of N-glycans by N-acetylglucosaminyltransferase I (GlcNAc-TI, MGAT1) can be considered to be a hallmark of multicellular eukaryotes as it is found in all metazoans and plants, but rarely in unicellular organisms. The enzyme is key for the normal processing of N-glycans to either complex or paucimannosidic forms, both of which are found in the model nematode Caenorhabditis elegans. Unusually, this organism has three different GlcNAc-TI genes (gly-12, gly-13 and gly-14); therefore, a complete abolition of GlcNAc-TI activity required the generation of a triple knock-out strain. Previously, the compositions of N-glycans from this mutant were described, but no detailed structures. Using an off-line HPLC-MALDI-TOF-MS approach combined with exoglycosidase digestions and MS/MS, we reveal that the multiple hexose residues of the N-glycans of the gly-12;gly-13;gly-14 triple mutant are not just mannose, but include galactoses in three different positions (β-intersecting, β-bisecting and α-terminal) on isomeric forms of Hex4-8HexNAc2 structures; some of these structures are fucosylated and/or methylated. Thus, the N-glycomic repertoire of Caenorhabditis is even wider than expected and exhibits a large degree of plasticity even in the absence of key glycan processing enzymes from the Golgi apparatus.  相似文献   

2.
BackgroundPrevious glycophylogenetic comparisons of dipteran and lepidopteran species revealed variations in the anionic and zwitterionic modifications of their N-glycans; therefore, we wished to explore whether species- and order-specific glycomic variations would extend to the hymenoptera, which include the honeybee Apis mellifera, an agriculturally- and allergologically-significant social species.MethodsIn this study, we employed an off-line liquid chromatography/mass spectrometry approach, in combination with enzymatic and chemical treatments, to analyse the N-glycans of male honeybee larvae and honeybee venom in order to facilitate definition of isomeric structures.ResultsThe neutral larval N-glycome was dominated by oligomannosidic and paucimannosidic structures, while the neutral venom N-glycome displayed more processed hybrid and complex forms with antennal N-acetylgalactosamine, galactose and fucose residues including Lewis-like epitopes; the anionic pools from both larvae and venom contained a wide variety of glucuronylated, sulphated and phosphoethanolamine-modified N-glycans with up to three antennae. In comparison to honeybee royal jelly, there were more fucosylated and fewer Man4/5-based hybrid glycans in the larvae and venom samples as well as contrasting antennal lengths.ConclusionsCombining the current data on venom and larvae with that we previously published on royal jelly, a total honeybee N-glycomic repertoire of some 150 compositions can be proposed in addition to the 20 previously identified on specific venom glycoproteins.SignificanceOur data are indicative of tissue-specific modification of the core and antennal regions of N-glycans in Apis mellifera and reinforce the concept that insects are capable of extensive processing to result in rather complex anionic oligosaccharide structures.  相似文献   

3.
In recent years, the glycoconjugates of many parasitic nematodes have attracted interest due to their immunogenic and immunomodulatory nature. Previous studies with the porcine roundworm parasite Ascaris suum have focused on its glycosphingolipids, which were found, in part, to be modified by phosphorylcholine. Using mass spectrometry and western blotting, we have now analyzed the peptide N-glycosidase A-released N-glycans of adults of this species. The presence of hybrid bi- and triantennary N-glycans, some modified by core alpha1,6-fucose and peripheral phosphorylcholine, was demonstrated by LC/electrospray ionization (ESI)-Q-TOF-MS/MS, as was the presence of paucimannosidic N-glycans, some of which carry core alpha1,3-fucose, and oligomannosidic oligosaccharides. Western blotting verified the presence of protein-bound phosphorylcholine and core alpha1,3-fucose, whereas glycosyltransferase assays showed the presence of core alpha1,6-fucosyltransferase and Lewis-type alpha1,3-fucosyltransferase activities. Although, the unusual tri- and tetrafucosylated glycans found in the model nematode Caenorhabditis elegans were not found, the vast majority of the N-glycans found in A. suum represent a subset of those found in C. elegans; thus, our data demonstrate that the latter is an interesting glycobiological model for parasitic nematodes.  相似文献   

4.
BackgroundInsects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability.MethodsUsing an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line.ResultsWe detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed.ConclusionThe lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species.SignificanceThe occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production.  相似文献   

5.
Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes.  相似文献   

6.
7.
Lectins are carbohydrate binding proteins that are gaining attention as important tools for the identification of specific glycan markers expressed during different stages of the cancer. We earlier reported the purification of a mitogenic lectin from human pathogenic fungus Cephalosporium curvulum (CSL) that has complex sugar specificity when analysed by hapten inhibition assay. In the present study, we report the fine sugar specificity of CSL as determined by glycan array analysis. The results revealed that CSL has exquisite specificity towards core fucosylated N-glycans. Fucosylated trimannosyl core is the basic structure required for the binding of CSL. The presence of fucose in the side chain further enhances the avidity of CSL towards such glycans. The affinity of CSL is drastically reduced towards the non-core fucosylated glycans, in spite of their side chain fucosylation. CSL showed no binding to the tested O-glycans and monosaccharides. These observations suggest the unique specificity of CSL towards core fucosylated N-glycans, which was further validated by binding of CSL to human colon cancer epithelial and hepatocarcinoma cell lines namely HT29 and HepG2, respectively, that are known to express core fucosylated N-glycans, using AOL and LCA as positive controls. LCA and AOL are fucose specific lectins that are currently being used clinically for the diagnosis of hepatocellular carcinomas. Most of the gastrointestinal markers express core fucosylated N-glycans. The high affinity and exclusive specificity of CSL towards α1-6 linkage of core fucosylated glycans compared to other fucose specific lectins, makes it a promising molecule that needs to be further explored for its application in the diagnosis of gastrointestinal cancer.  相似文献   

8.
9.
Infections by blood flukes (Cardicola spp.) are considered the most significant health issue for ranched bluefin tuna, a major aquaculture industry in Japan and Australia. The host–parasite interfaces of trematodes, namely their teguments, are particularly rich in carbohydrates, which function both in evasion and modulation of the host immune system, while some are primary antigenic targets. In this study, histochemistry and mass spectrometry techniques were used to profile the glycans of Cardicola forsteri. Fluorescent lectin staining of adult flukes indicates the presence of oligomannose (Concanavalin A-reactive) and fucosylated (Pisum sativum agglutinin-reactive) N-glycans. Additionally, reactivity of succinylated wheat germ agglutinin (s-WGA) was localised to several internal organs of the digestive and monoecious reproductive systems. Glycan structures were further investigated with tandem mass spectrometry, which revealed structures indicated by lectin reactivity. While O-glycans from these adult specimens were not detectable by mass spectrometry, several oligomannose, paucimannosidic, and complex-type N-glycans were identified, including some carrying hexuronic acid and many carrying core xylose. This is, to our knowledge, the first glycomic characterisation of a marine platyhelminth, with broader implications for research into other trematodes.  相似文献   

10.
Almost nothing is known about atypical kinases in multicellular organisms, including parasites. Supported by information and data available for the free-living nematode, Caenorhabditis elegans, and other eukaryotes, the present article describes three RIO kinase genes, riok-1, riok-2 and riok-3, from Haemonchus contortus, one of the most important parasitic nematodes of small ruminants. Analyses of these genes and their products predict that they each play critical roles in the developmental pathways of parasitic nematodes. The findings of this review indicate prospects for functional studies of these genes in C. elegans (as a surrogate) and opportunities for the design of a novel class of nematode-specific inhibitors of RIO kinases. The latter aspect is of paramount importance, given the serious problems linked to anthelmintic resistance in parasitic nematode populations of livestock.  相似文献   

11.
Nematode parasite infections cause disease in humans and animals and threaten global food security by reducing productivity in livestock and crop farming. The escalation of anthelmintic resistance in economically important nematode parasites underscores the need for the identification of novel drug targets in these worms. Nematode neuropeptide signalling is an attractive system for chemotherapeutic exploitation, with neuropeptide G-protein coupled receptors (NP-GPCRs) representing the lead targets. In order to successfully validate NP-GPCRs for parasite control it is necessary to characterise their function and importance to nematode biology. This can be aided through identification of receptor activating ligand(s) via deorphanisation. Such efforts require the identification of all neuropeptide ligands within parasites. Here we mined the genomes of nine therapeutically relevant pathogenic nematodes to characterise the neuropeptide-like protein complements and demonstrate that: (i) parasitic nematodes possess a reduced complement of neuropeptide-like protein-encoding genes relative to Caenorhabditis elegans; (ii) parasite neuropeptide-like protein profiles are broadly conserved between nematode clades; (iii) five Ce-nlps are completely conserved across the nematode species examined; (iv) the extent and position of neuropeptide-like protein-motif conservation is variable; (v) novel RPamide-encoding genes are present in parasitic nematodes; (vi) novel Allatostatin-C-like peptide encoding genes are present in both C. elegans and parasitic nematodes; (vii) novel neuropeptide-like protein families are absent in C. elegans; and (viii) highly conserved nematode neuropeptide-like proteins are bioactive. These data highlight the complexity of nematode neuropeptide-like proteins and reveal the need for nomenclature revision in this diverse neuropeptide family. The identification of neuropeptide-like protein ligands, and characterisation of those with functional relevance, advance our understanding of neuropeptide signalling to support exploitation of the neuropeptidergic system as an anthelmintic target.  相似文献   

12.
Fucose is a common monosaccharide component of cell surfaces and is involved in many biological recognition events. Therefore, definition and exploitation of the specificity of the enzymes (fucosyltransferases) involved in fucosylation is a recurrent theme in modern glycosciences. Despite various studies, the specificities of many fucosyltransferases are still unknown, so new approaches are required to study these. The model nematode Caenorhabditis elegans expresses a wide range of fucosylated glycans, including N-linked oligosaccharides with unusual complex core modifications. Up to three fucose residues can be present on the standard N,N′-diacetylchitobiose unit of these N-glycans, but only the fucosyltransferases responsible for transfer of two of these (the core α1,3-fucosyltransferase FUT-1 and the core α1,6-fucosyltransferase FUT-8) were previously characterized. By use of a glycan library in both array and solution formats, we were able to reveal that FUT-6, another C. elegans α1,3-fucosyltransferase, modifies nematode glycan cores, specifically the distal N-acetylglucosamine residue; this result is in accordance with glycomic analysis of fut-6 mutant worms. This core-modifying activity of FUT-6 in vitro and in vivo is in addition to its previously determined ability to synthesize Lewis X epitopes in vitro. A larger scale synthesis of a nematode N-glycan core in vitro using all three fucosyltransferases was performed, and the nature of the glycosidic linkages was determined by NMR. FUT-6 is probably the first eukaryotic glycosyltransferase whose specificity has been redefined with the aid of glycan microarrays and so is a paradigm for the study of other unusual glycosidic linkages in model and parasitic organisms.  相似文献   

13.
14.
15.
16.
Mass spectrometric studies on the N-linked glycans of aminopeptidase 1 from Manduca sexta have revealed unusual structures not previously observed on any insect glycoprotein. Structure elucidation of these oligosaccharides was carried out by high-energy collision-induced dissociation (CID) using a matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) tandem mass spectrometer. These key experiments revealed that three out of the four N-linked glycosylation sites in this protein (Asn295, Asn623 and Asn752) are occupied with highly fucosylated N-glycans that possess unusual difucosylated cores. Cross-ring fragment ions and 'internal' fragment ions observed in the CID spectra, showed that these fucoses are found at the 3-position of proximal GlcNAc and at the 3-position of distal GlcNAc in the chitobiose unit. The latter substitution has only been previously observed in nematodes. In addition, these core structures can be decorated with novel fucosylated antennae composed of Fucalpha(1-3)GlcNAc. Key fragment ions revealed that these antennae are predominantly found on the upper 6-arm of the core mannose. The paucimannosidic N-glycan (Man(3)GlcNAc(2)), commonly found on other insect glycoproteins, is the predominant oligosaccharide found at the remaining N-glycosylation site (Asn609).  相似文献   

17.
The cholinergic class of anthelmintic drugs is used for the control of parasitic nematodes. One of this class of drugs, tribendimidine (a symmetrical diamidine derivative, of amidantel), was developed in China for use in humans in the mid-1980s. It has a broader-spectrum anthelmintic action against soil-transmitted helminthiasis than other cholinergic anthelmintics, and is effective against hookworm, pinworms, roundworms, and Strongyloides and flatworm of humans. Although molecular studies on C. elegans suggest that tribendimidine is a cholinergic agonist that is selective for the same nematode muscle nAChR as levamisole, no direct electrophysiological observations in nematode parasites have been made to test this hypothesis. Also the hypothesis that levamisole and tribendimine act on the same receptor, does not explain why tribendimidine is effective against some nematode parasites when levamisole is not. Here we examine the effects of tribendimidine on the electrophysiology and contraction of Ascaris suum body muscle and show that tribendimidine produces depolarization antagonized by the nicotinic antagonist mecamylamine, and that tribendimidine is an agonist of muscle nAChRs of parasitic nematodes. Further pharmacological characterization of the nAChRs activated by tribendimidine in our Ascaris muscle contraction assay shows that tribendimidine is not selective for the same receptor subtypes as levamisole, and that tribendimidine is more selective for the B-subtype than the L-subtype of nAChR. In addition, larval migration inhibition assays with levamisole-resistant Oesophagostomum dentatum isolates show that tribendimidine is as active on a levamisole-resistant isolate as on a levamisole-sensitive isolate, suggesting that the selectivity for levamisole and tribendimidine is not the same. It is concluded that tribendimidine can activate a different population of nematode parasite nAChRs than levamisole, and is more like bephenium. The different nAChR subtype selectivity of tribendimidine may explain why the spectrum of action of tribendimidine is different to that of other cholinergic anthelmintics like levamisole.  相似文献   

18.
BackgroundThe lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner.Conclusions/SignificanceThe challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus reducing the potential toxicity of these compounds to the host and the environment. We believe this approach will help to replenish the pipeline of potential nematicides.  相似文献   

19.
Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号