首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.  相似文献   

2.
Abstract

Based on worm like chain model, DNA structural parameters—tilt, roll and rise, derived from crystallographic database have been used to determine the flexibility of DNA that regulates the nucleosomal translational positioning. Theoretically derived data has been compared to the experimental values available in Ioshikhes and Trifonov's database. The methodology has been extended to determine the flexibility of 18S rRNA genome in eukarya, where yeast shows a distinct difference when compared with mammals like human, mouse and rabbit.  相似文献   

3.
Energy-coupling factor (ECF) transporters, a recently discovered class of importers of micronutrients, are composed of a substrate-specific transmembrane component (S component) and a conserved energy-coupling module consisting of a transmembrane protein (T component) and pairs of ABC ATPases (A proteins). Based on utilization of a dedicated (subclass I) or shared (subclass II) energy-coupling module, ECF systems fall into two subclasses. The T components are the least-characterized proteins of ECF importers, and their function is essentially unknown. Using RcBioN and LmEcfT, the T units of the subclass I biotin transporter (RcBioMNY) of a gram-negative bacterium and of the subclass II folate, pantothenate, and riboflavin transporters of a lactic acid bacterium, respectively, we analyzed the role of two strongly conserved short motifs, each containing an arginine residue. Individual replacement of the two Arg residues in RcBioN reduced ATPase activity, an indicator of the transporter function, by two-thirds without affecting the modular assembly of the RcBioMNY complex. A double Arg-to-Glu replacement destroyed the complex and abolished ATPase activity. The corresponding single mutation in motif II of LmEcfT, as well as a double mutation, led to loss of the T unit from the subclass II ECF transporters and inactivated these systems. A single Arg-to-Glu replacement in motif I, however, abolished vitamin uptake activity without affecting assembly of the modules. Our results indicate that the conserved motif I in T components is essential for intramolecular signaling and, in cooperation with motif II, for subunit assembly of modular ECF transporters.Energy-coupling factor (ECF) transporters are a recently discovered novel class of importers of micronutrients in prokaryotes (9, 12, 13, 20). They are composed of a conserved energy-coupling module consisting of a transmembrane protein (T component) and pairs of ATP-binding cassette-containing proteins (A proteins), as well as an S unit (S component) through which substrate specificity is conveyed. S components represent a group of highly diverse small integral membrane proteins with predicted or experimentally established individual specificity for transition metal ions, B vitamins or their precursors, biotin, lipoate, and intermediates of salvage pathways. A link between substrate specificity and S components has been experimentally demonstrated in the case of CbiMN (Co2+) and NikMN (Ni2+) (13), RibU (riboflavin) (4, 6, 19), BioY (biotin) (9), FolT (folate) (8, 12), and ThiT (thiamine) (8, 12, 14). Based on utilization of a dedicated or shared AAT module, ECF transporters fall into two subclasses. Members of subclass I are encoded by operons containing one or two ABC ATPase genes, a T-component gene, and an S-component gene (12). RcBioMNY, the biotin transporter of Rhodobacter capsulatus, is the prototype of these systems. Previous work has established that the solitary BioY (S component) can function as a low-affinity transporter. It is converted into a high-affinity system in the presence of the AAT module BioMN (9). Notably, the majority of ECF transporters belong to subclass II. These promiscuous systems are widespread in the Firmicutes and also occur in members of the Thermotogales lineage and in archaea (12). In general, the cells contain a single ecfA1A2T operon and a number of genes for S units that are scattered around the genome. Cooccurrence of subclass I and subclass II ECF transporters is found in archaeal and bacterial species. The bioinformatic prediction for subclass II systems suggesting that several diverse S components interact with the same EcfA1A2T module has recently been confirmed experimentally for folate, riboflavin, and thiamine transporters of Bacillus subtilis, Lactobacillus casei, and Leuconostoc mesenteroides and for the hypothetical pantothenate transporter of L. mesenteroides (12).The modular composition of ECF transporters poses questions about their oligomeric structure, the specificity of subunit recognition, and the intersubunit signaling that couples substrate uptake to ATP hydrolysis by the ABC ATPase domains. These issues are essentially unsolved for any ECF transporter.In the present study, we confirm the predicted role of L. mesenteroides PanT (LmPanT) as a pantothenate-specific S component that functionally interacts with the LmEcfA1A2T module. The main focus is on the role of the T components, which are the least-characterized proteins of ECF importers. T proteins have moderately similar primary structures. Two 3-amino-acid signatures with Ala-Arg-Gly as the consensus sequence in the C-terminal part are the most conserved feature in the T units. Using RcBioMNY as a member of subclass I and LmEcfA1A2T plus LmFolT, LmPanT, or LmRibU as representatives of subclass II ECF transporters, we obtained evidence that replacement of either of the Arg residues in the T proteins strongly reduces or abolishes activity of the systems. While double mutations interfered with complex stability in each case, single replacements of the Arg residue in motif I did not have a marked impact on stability of the complexes, suggesting that this residue is important primarily for intramolecular signaling in both subclasses of ECF transporters.  相似文献   

4.
Abstract

Using the circular dichroism spectra induced in the visible by the binding to the minor groove of DNA, we found that Hoechst 33258 is able to occupy its specific sites even when these are located inside the nucleosome structure. This high accessibility of the DNA in the nucleosome is not modified by the removal of the amino-terminal domains of the octamer histones and is not reduced by the presence of linker histone. Interesting and reasonable differences were found in the association constants.  相似文献   

5.
6.
Abstract

Two monoclinic crystal forms (P21,C2) of chicken erythrocyte nucleosomes have been under study in this laboratory. The x-ray structure of the P21 crystal form has been solved to 15 Å resolution. The B-DNA superhelix has a relatively uniform curvature, with only several local distortions observed in the superhelix. The individual histone domains have been localized and specific contacts between each histone and the DNA can be observed. Histone contacts to the inner surface of the DNA superhelix occur predominantly at the minor groove sites. Most of the histone core is contained within the inner surface of the superhelical DNA, except for part of H2A which extends between the DNA gyres near the terminus of the DNA. No part of H2A blocks the DNA terminus or would prevent a smooth exit of the DNA into the linker region. A similar extension of a portion of histone H4 between the DNA gyres occurs close to the dyad axis. Both unique nucleosomes in the P21 asymmetric unit demonstrate good dyad symmetry and are similar to each other throughout the histone core and DNA regions.  相似文献   

7.
Three lines of evidence indicate that arginine-46 (R46) and arginine-275 (R275) are essential to the function of UhpT, the Pi-linked antiport protein of Escherichia coli. A role for arginine was initially suggested by the sensitivity of UhpT to inhibition by 2,3-butanedione, an arginine-directed probe. Since the presence of substrate protected against this inhibition, this work further suggested that arginine(s) may lie at or near the UhpT active site. In other work, each UhpT arginine was examined individually by using site-directed mutagenesis to generate a cysteine or a lysine derivative. With two exceptions (R46, R275), all arginines could be replaced by either cysteine (10 of 14 residues) or lysine (12 of 14) without loss of function, implicating R46 and R275 as essential to UhpT function. This idea was strengthened by examining a multiple alignment of the eleven known UhpT-related proteins (≥30% identity). That alignment showed R46 and R275 were two of the only three arginines strongly conserved in this group of proteins. Considered together, these different approaches lead us to conclude that UhpT and its relatives have only two arginine residues (R46, R275) whose presence is essential to function. Prior biochemical work had placed R275 at the external entrance to the translocation pathway, and a symmetry argument emerging from the multiple alignment suggests a similar position for R46. Accordingly, by virtue of their locations at the entrance to this pathway, we speculate that R46 and R275 function in establishing substrate specificity. Received: 29 January 1998/Revised: 13 April 1998  相似文献   

8.
9.
10.
Abstract

The accessibility of the two complementary DNA strands in newly replicated chromatin of Ehrlich ascites tumor (EAT) cells grown under conditions of cycloheximide-inhibrted protein synthesis was studied by analysis of the DNase I digestion of isolated nuclei. Bulk DNA was labeled with 14C-thymidine and the newly synthesized strands - with bromodeoxyu ridine and 3H-thymidine. The DNase I digests were fractionated in two successive CsCl density gradient centrifugations to obtain a dense fraction containing 15–20% newly replica ted DNA Analysis of the distribution of 14C-labeled parental DNA fragments complementary to the 3H-nascent strand has shown that the 14C-labeled fragments prevail in the region of 30–50 nucleotides. Simulation experiments using the rate constants for DNase I attack show that this result may be explained by an enhanced accessibility at the nucleosomal 5′-end region of the parental strands, where the H2a-H2b dimer interacts with DNA. This asymmetry seems tobe induced by interactions in the chromatin.  相似文献   

11.
Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597°) in one plane and very little curvature (10°) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30° per helical turn throughout most of the structure but that there are two sharper kinks of 50° at ± 2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500° of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure were obtained by applying a constant bending moment. When a single bending moment was applied to the entire sequence, the local details of the calculated structure did not match the experiment. However, when local 10-step bending moments were applied separately, the calculated structure showed excellent agreement with experiment. This implies that the protein applies variable bending forces along the DNA to maintain the superhelical path required for nucleosome wrapping. In particular, the 50° kinks are constraints imposed by the protein rather than a feature of the 1kx5 DNA sequence. The kinks coincide with a relatively flexible region of the sequence, and this is probably a prerequisite for high-affinity nucleosome binding, but the bending strain energy is significantly higher at these points than for the rest of the sequence. In the most rigid regions of the sequence, a higher strain energy is also required to achieve the standard 30° curvature per helical turn. We conclude that matching of the DNA sequence to the local roll periodicity required to achieve bending, together with the increased flexibility required at the kinks, determines the sequence selectivity of DNA wrapping in the nucleosome.  相似文献   

12.
13.
Flexibility of DNA   总被引:12,自引:0,他引:12  
J A Schellman 《Biopolymers》1974,13(1):217-226
A model for the flexibility of DNA is proposed that is based on discrete variations in the direction of propagation in going from one subunit to the next. Expansion of the local free energy in terms of the local bending gives a Gaussian distribution function. The assumption of the independence of local bends on neighbors lead to very simple formulae for the persistence length and the characteristic ratio. Emphasis, however, is placed on the application of the formulae for molecules of finite size where the persistence length and C are not defined. The formulae are worked out for two models, which should serve as limits for the real physical situation.  相似文献   

14.
The positioning of nucleosomes has been analysed by comparing the pattern of cutting sites of a probing reagent on chromatin and naked DNA. For this purpose, high molecular weight DNA and nuclei from the liver of young (18±2 weeks) and old (100±5 weeks) Wistar male rats were digested with micrococcal nuclease (MNase) and hybridized with 32P-labelled rat satellite DNA probe. A comparison of the ladder generated by MNase with chromatin and nuclei indicates long range organization of the satellite chromatin fiber with distinct non-random positioning of nucleosomes. However, the positioning of nucleosomes on satellite DNA does not vary with age. For studying the periodicity and subunit structure of satellite DNA, high molecular weight DNA from the liver of young and old rats were digested with different restriction enzymes. Surprisingly, no noteworthy age-related change is visible in the periodicity and subunit structural organization of the satellite DNA. These results suggest that the nucleosome positioning and the periodicity of liver satellite DNA do not vary with age.  相似文献   

15.
Previous studies have shown that treatment of cultured fibroblasts with millimolar concentrations of sodium butyrate results in increased methylation of cytosine residues in DNA. In this study, active nucleosomes were fractionated from the inactive ones by organomercurial agarose column chromatography. DNA in each fraction was hydrolyzed to its constituent bases and subjected to HPLC analysis in order to determine the 5-methylcytosine content. In control cells, the active nucleosomal DNA was hypomethylated (0.97 ± 0.27% 5-methylcytosine) when compared with the inactive DNA fraction (1.61 ± 0.15%). This result was not unexpected since DNA hypermethylation is generally associated with gene inactivation. Treatment of cells with sodium butyrate, however, resulted in increased methylation of the active nucleosomal DNA such that it was comparable to that of the inactive fraction of control cells (1.73 ± 0.02% 5-methylcytosine). A much smaller increase in 5-methylcytosine content was detected in the inactive DNA fraction of sodium butyrate-treated cells (from 1.61 to 1.89%). Removal of the sodium butyrate followed by a chase in butyrate-free medium for up to 120 h failed to reverse the butyrate-induced hypermethylation. Reversal was achieved only after continuous culture in butyrate-free medium for 10 days.  相似文献   

16.
The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased “intrinsic exposure” of nucleosome-associated DNA lesions in chromatin to repair proteins.  相似文献   

17.
While nucleosomes are dynamic entities that must undergo structural deformations to perform their functions, the general view from available high-resolution structures is a largely static one. Even though numerous examples of twist defects have been documented, the DNA wrapped around the histone core is generally thought to be overtwisted. Analysis of available high-resolution structures from the Protein Data Bank reveals a heterogeneous distribution of twist along the nucleosomal DNA, with clear patterns that are consistent with the literature, and a significant fraction of structures that are undertwisted. The subtle differences in nucleosomal DNA folding, which extend beyond twist, have implications for nucleosome disassembly and modeled higher-order structures. Simulations of oligonucleosome arrays built with undertwisted models behave very differently from those constructed from overtwisted models, in terms of compaction and inter-nucleosome contacts, introducing configurational changes equivalent to those associated with 2–3 base-pair changes in nucleosome spacing. Differences in the nucleosomal DNA pathway, which underlie the way that DNA enters and exits the nucleosome, give rise to different nucleosome-decorated minicircles and affect the topological mix of configurational states.  相似文献   

18.
The XPC protein complex is a DNA damage detector of human nucleotide excision repair (NER). Although the XPC complex specifically binds to certain damaged sites, it also binds to undamaged DNA in a non-specific manner. The addition of a large excess of undamaged naked DNA competitively inhibited the specific binding of the XPC complex to (6-4) photoproducts and the NER dual incision step in cell-free extracts. In contrast, the addition of undamaged nucleosomal DNA as a competitor suppressed both of these inhibitory effects. Although nucleosomes positioned on the damaged site inhibited the binding of the XPC complex, the presence of nucleosomes in undamaged DNA regions may help specific binding of the XPC complex to damaged sites by excluding its non-specific binding to undamaged DNA regions.  相似文献   

19.
Small angle x-ray scattering was used to follow changes in the conformation and interactions of nucleosome core particles (NCP) as a function of the monovalent salt concentration Cs. The maximal extension (Dmax) of the NCP (145 ± 3-bp DNA) increases from 137 ± 5 Å to 165 ± 5 Å when Cs rises from 10 to 50 mM and remains constant with further increases of Cs up to 200 mM. In view of the very weak increase of the Rg value in the same Cs range, we attribute this Dmax variation to tail extension, a proposal confirmed by simulations of the entire I(q) curves, considering an ideal solution of particles with tails either condensed or extended. This tail extension is observed at higher salt values when particles contain longer DNA fragments (165 ± 10 bp). The maximal extension of the tails always coincides with the screening of repulsive interactions between particles. The second virial coefficient becomes smaller than the hard sphere virial coefficient and eventually becomes negative (net attractive interactions) for NCP145. Addition of salt simultaneously screens Coulombic repulsive interactions between NCP and Coulombic attractive interactions between tails and DNA inside the NCP. We discuss how the coupling of these two phenomena may be of biological relevance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号