首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Identification of snake species is important for various reasons including the emergency treatment of snake bite victims. We present a simple method for identification of six snake species using the gel filtration chromatographic profiles of their venoms. The venoms of Echis coloratus, Echis pyramidum, Cerastes gasperettii, Bitis arietans, Naja arabica, and Walterinnesia aegyptia were milked, lyophilized, diluted and centrifuged to separate the mucus from the venom. The clear supernatants were filtered and chromatographed on fast protein liquid chromatography (FPLC). We obtained the 16S rRNA gene sequences of the above species and performed phylogenetic analysis using the neighbor-joining method. The chromatograms of venoms from different snake species showed peculiar patterns based on the number and location of peaks. The dendrograms generated from similarity matrix based on the presence/absence of particular chromatographic peaks clearly differentiated Elapids from Viperids. Molecular cladistics using 16S rRNA gene sequences resulted in jumping clades while separating the members of these two families. These findings suggest that chromatographic profiles of snake venoms may provide a simple and reproducible chemical fingerprinting method for quick identification of snake species. However, the validation of this methodology requires further studies on large number of specimens from within and across species.  相似文献   

2.
Snake envenoming is a major problem in Al-Jouf Province of Saudi Arabia where most of these envenoming are caused by Echis coloratus which is the highest risk to human and animals in this Province. Little, if any, has been carried out on the histological alterations and biochemical changes in the liver of sheep following snake envenomation. Healthy adult male Ovis orientalis sheep were subjected to E. coloratus envenomation in an attempt to evaluate the histological alterations and biochemical changes in the liver. E. coloratus venom elevated glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride and total bilirubin while cholesterol was reduced. The histological alterations were mainly pyknosis, karyorrhexis, cytoplasmic vacuolation, necrosis, fatty changes and hepatocytes atrophy. Sinusoidal dilatation, Kupffer cell activation, amyloidosis, portal vein thrombosis, partial glycogen depletion and hepatic architecture distortion were also detected. The findings revealed that E. coloratus venom produced biochemical changes and histological alterations in the liver of the envenomated sheep that might affect the functions of this organ severely.  相似文献   

3.
BackgroundNeutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.MethodsFormation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.ResultsE. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.ConclusionFor the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.SignificanceUnderstanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology.  相似文献   

4.
Snakebite envenoming remains a neglected tropical disease which poses severe health hazard, especially for the rural inhabitants in Africa. In Nigeria, vipers are responsible for the highest number of deaths. Hydrophilic interaction liquid chromatography coupled with LC-MS/MS was used to analyze the crude venoms of Echis ocellatus (Carpet viper) and Bitis arietans (Puff adder) in order to understand their venom proteomic identities. Results obtained revealed that gel-free proteomic analysis of the crude venoms led to the identification of 85 and 79 proteins, respectively. Seventy-eight (78) proteins were common between the two snake species with a 91.8% similarity score. The identified proteins belong to 18 protein families in E. ocellatus and 14 protein families in B. arietans. Serine proteases (22.31%) and metalloproteinases (21.06%) were the dominant proteins in the venom of B. arietans; while metalloproteinases (34.84%), phospholipase A2s (21.19%) and serine proteases (15.50%) represent the major toxins in the E. ocellatus venom. Other protein families such as three-finger toxins and cysteine-rich venom proteins were detected in low proportions. This study provides an insight into the venom proteomic analysis of the two Nigerian viper species, which could be useful in identifying the toxin families to be neutralized in case of envenomation.  相似文献   

5.
BackgroundSnakebite envenomation exerts a heavy toll in sub-Saharan Africa. The design and production of effective polyspecific antivenoms for this region demand a better understanding of the immunological characteristics of the different venoms from the most medically important snakes, to select the most appropriate venom combinations for generating antivenoms of wide neutralizing scope. Bitis spp. and Echis spp. represent the most important viperid snake genera in Africa.Methodology/Principal findingsEight rabbit-derived monospecific antisera were raised against the venoms of four species of Bitis spp. and four species of Echis spp. The effects of immunization in the rabbits were assessed, as well as the development of antibody titers, as judged by immunochemical assays and neutralization of lethal, hemorrhagic, and in vitro coagulant effects. At the end of immunizations, local and pulmonary hemorrhage, together with slight increments in the plasma activity of creatine kinase (CK), were observed owing to the action of hemorrhagic and myotoxic venom components. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within each genus, although some antisera provided a more extensive cross-reactivity than others. The venoms that generated antisera with the broadest coverage were those of Bitis gabonica and B. rhinoceros within Bitis spp. and Echis leucogaster within Echis spp.Conclusions/SignificanceThe methodology followed in this study provides a rational basis for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against viperid venoms in sub-Saharan Africa. Results suggest that the venoms of B. gabonica, B. rhinoceros, and E. leucogaster generate antisera with the broadest cross-reactivity within their genera. These experimental results in rabbits need to be translated to large animals used in antivenom production to assess whether these predictions are reproduced in horses or sheep.  相似文献   

6.
It has been found that the lethal action of elapid snake venoms to arthropods (fly larvae and isopods) is due to proteic factors differing from the toxins which are strongly and specifically active on mammals.This conclusion was based on the following: (1) Lack of any correlation between the toxic activity on larvae, isopods, and mice of ten elapid snake venoms. (2) Absence of any toxicity to arthropods in pure toxins isolated and purified from several elapid snake venoms according to their lethality. (3) Electrophoretical separation of the venom of the snake Naja mossambica mossambica (= N. nigricollis mossambica) resulted in fractions active either to arthropods and/or to mice. (4) Separation of the above venom by gel filtration on Sephadex G-50 enabled the isolation of fractions highly toxic to arthropods. (5) The above fractions demonstrated a high phospholipase activity corresponding to about 80 per cent of the total activity of the whole venom. The link between phospholipase and toxicity to arthropods will serve as a target for further investigation.It appears that the phenomenon of diversity in toxic activities of different proteins to different groups of organism, as previously demonstrated in scorpion venoms, is equally shared by elapid snake venoms.  相似文献   

7.
Snake venoms contain a vast array of toxic polypeptide components interacting with a variety of cell targets. Thus, Elapidae snake venoms contain α-neurotoxins with very high affinity for nicotinic acetylcholine receptors (nAChRs) and a few toxins able to suppress the activity of Ca2+ and K+ channels. Experimental evidence for the presence of nAChR antagonists and voltage-gated ionic channel blockers in venoms of Viperidae snakes is very scarce. In this study, effects of crude venoms of seven snake species (Vipera nikolskii, Echis multisquamatus, Gloydius saxatilis, Bitis arietans, Vipera renardi, Vipera lebetina, and Naja kaouthia) on nAChRs and voltage-gated Ca2+ channels were studied for the first time. The experiments were carried out on isolated identified neurons of the fresh-water mollusc Lymnaea stagnalis using voltage-clamp and intracellular perfusion techniques. All Viperidae snake venoms under study blocked nAChRs and voltage-gated Ca2+ channels. The potency of these venoms against nAChRs was significantly lower in comparison with N. kaouthia venom which is rich of α-neurotoxins; however, the extent of Ca2+ channel block by venoms of Viperidae snakes and N. kaouthia was similar. The data obtained suggest that Viperidae snake venoms tested in this study contain peptides with affinity both for nAChRs and for voltage-gated Ca2+ channels.  相似文献   

8.
In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted.  相似文献   

9.
10.
1. Pure monoclonal antibodies to Vipera lebetina venom nerve growth factor have been isolated by affinity chromatography using CNBr-agarose bound antigen. 2. Nerve growth factors from ten snake venoms (Vipera lebetina, Vipera russellii, Vipera berus berus, Vipera ursini, Echis carinatus, Agkistrodon halys, Bungarus caeruleus, Naja naja oxiana, Naja naja, Naja naja atra) were purified using monoclonal antibodies against NGF linked to BrCN-activated agarose.  相似文献   

11.
Brown spiders have a worldwide distribution, and their venom has a complex composition containing many different molecules. Herein, we report the existence of a family of astacin-like metalloprotease toxins in Loxosceles intermedia venom, as well as in the venom of different species of Loxosceles. Using a cDNA library from the L. intermedia venom gland, we cloned two novel cDNAs encoding astacin-like metalloprotease toxins, LALP2 and LALP3. Using an anti-serum against the previously described astacin-like toxin in L. intermedia venom (LALP1), we detected the presence of immunologically-related toxins in the venoms of L. intermedia, Loxosceles laeta, and Loxosceles gaucho. Zymographic experiments showed gelatinolytic activity of crude venoms of L. intermedia, L. laeta, and L. gaucho (which could be inhibited by the divalent metal chelator 1,10-phenanthroline) at electrophoretic mobilities identical to those reported for immunological cross-reactivity. Moreover, mRNAs extracted from L. laeta and L. gaucho venom glands were screened for astacin-like metalloproteases, and cDNAs obtained using LALP1-specific primers were sequenced, and their deduced amino acid sequences confirmed they were members of the astacin family with the family signatures (HEXXHXXGXXHE and MXY), LALP4 and LALP5, respectively. Sequence comparison of deduced amino acid sequences revealed that LALP2, LALP3, LALP4, and LALP5 are related to the astacin family. This study identified the existence of gene family of astacin-like toxins in the venoms of brown spiders and raises the possibility that these molecules are involved in the deleterious effects triggered by the venom.  相似文献   

12.
13.
14.
15.
G Borkow  M Ovadia 《Life sciences》1992,51(16):1261-1267
Viperid, elapid and crotalid snake venoms were screened in vitro for antiviral activity against Sendai virus. The hemolysis of 10(8) human erythrocytes in 1 ml, caused by 70 HAU of Sendai virus, was abolished when the virions were pretreated with 10 ug of the viperid venom of Echis coloratus, and was considerably diminished when pretreated with 10 ug of the venom of Echis carinatus sochureki, the cobra venoms of Naja atra and Naja nigricollis nigricollis. These venoms did not affect the erythrocytes but inhibited the virions themselves irreversibly. All other examined snake venoms had low or no antiviral activity. There was no correlation between the proteolytic and the antiviral activity of the venoms.  相似文献   

16.
The effect of four viper venoms (Oxyuranus scutellatus, Notechis scutatus scutatus, Echis carinatus, Naja nigricollis) on prothrombin Padua has been studied. Using Oxyuranus scutellatus venom and Notechis scutatus scutatus venom, prothrombin activity resulted to be moderately decreased similarly to what observed with other one-stage and two-stage methods. On the contrary, using Echis carinatus venom a normal level was obtained. No clotting was observed using the Naja nigricollis venom, regardless of the concentration used. The normal level of factor II obtained with Echis carinatus venom as compared with the low levels obtained with the other venoms, suggests that it acts on a different site of the prothrombin molecule.  相似文献   

17.
《Journal of Proteomics》2010,73(1):57-78
The venom proteomes of Bothrops atrox from Colombia, Brazil, Ecuador, and Perú were characterized using venomic and antivenomic strategies. Our results evidence the existence of two geographically differentiated venom phenotypes. The venom from Colombia comprises at least 26 different proteins belonging to 9 different groups of toxins. PI-metalloproteinases and K49-PLA2 molecules represent the most abundant toxins. On the other hand, the venoms from Brazilian, Ecuadorian, and Peruvian B. atrox contain predominantly PIII-metalloproteinases. These toxin profiles correlate with the venom phenotypes of adult and juvenile B. asper from Costa Rica, respectively, suggesting that paedomorphism represented a selective trend during the trans-Amazonian southward expansion of B. atrox through the Andean Corridor. The high degree of crossreactivity of a Costa Rican polyvalent (Bothrops asper, Lachesis stenophrys, Crotalus simus) antivenom against B. atrox venoms further evidenced the close evolutionary kinship between B. asper and B. atrox. This antivenom was more efficient immunodepleting proteins from the venoms of B. atrox from Brazil, Ecuador, and Perú than from Colombia. Such behaviour may be rationalized taking into account the lower content of poorly immunogenic toxins, such as PLA2 molecules and PI-SVMPs in the paedomorphic venoms. The immunological profile of the Costa Rican antivenom strongly suggests the possibility of using this antivenom for the management of snakebites by B. atrox in Colombia and the Amazon regions of Ecuador, Perú and Brazil.  相似文献   

18.
Snake venoms contain a variety of protein and peptide toxins, and the three-finger toxins (3FTxs) are among the best characterized family of venom proteins. The compact nature and highly conserved molecular fold of 3FTxs, together with their abundance in many venoms, has contributed to their utility in structure-function studies. Although many target the nicotinic acetylcholine receptor of vertebrate skeletal muscle, often binding with nanomolar Kds, several non-conventional 3FTxs show pronounced taxon-specific neurotoxic effects. Here we describe the purification and characterization of fulgimotoxin, a monomeric 3FTx from the venom of Oxybelis fulgidus, a neotropical rear-fanged snake. Fulgimotoxin retains the canonical 5 disulfides of the non-conventional 3FTxs and is highly neurotoxic to lizards; however, mice are unaffected, demonstrating that this toxin is taxon-specific in its effects. Analysis of structural features of fulgimotoxin and other colubrid venom 3FTxs indicate the presence of a “colubrid toxin motif” (CYTLY) and a second conserved segment (WAVK) found in Boiga and Oxybelis taxon-specific 3FTxs, both in loop II. Because specific residues in loop II conventional α-neurotoxic 3FTxs are intimately associated with receptor binding, we hypothesize that this loop, with its highly conserved substitutions, confers taxon-specific neurotoxicity. These findings underscore the importance of rear-fanged snake venoms for understanding the evolution of toxin molecules and demonstrate that even among well-characterized toxin families, novel structural and functional motifs may be found.  相似文献   

19.
20.
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A2). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37 °C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH – minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号