首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multimodal, molecular imaging allows the visualization of biological processes at cellular, subcellular, and molecular-level resolutions using multiple, complementary imaging techniques. These imaging agents facilitate the real-time assessment of pathways and mechanisms in vivo, which enhance both diagnostic and therapeutic efficacy. This article presents the protocol for the synthesis of biofunctionalized Prussian blue nanoparticles (PB NPs) - a novel class of agents for use in multimodal, molecular imaging applications. The imaging modalities incorporated in the nanoparticles, fluorescence imaging and magnetic resonance imaging (MRI), have complementary features. The PB NPs possess a core-shell design where gadolinium and manganese ions incorporated within the interstitial spaces of the PB lattice generate MRI contrast, both in T1 and T2-weighted sequences. The PB NPs are coated with fluorescent avidin using electrostatic self-assembly, which enables fluorescence imaging. The avidin-coated nanoparticles are modified with biotinylated ligands that confer molecular targeting capabilities to the nanoparticles. The stability and toxicity of the nanoparticles are measured, as well as their MRI relaxivities. The multimodal, molecular imaging capabilities of these biofunctionalized PB NPs are then demonstrated by using them for fluorescence imaging and molecular MRI in vitro.  相似文献   

2.
Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385±5.0 nm with PDI of 0.169±0.011. The TEM and microscopy imaging showed that the DiR-SPIO-NDs existed as core-shell spheres, and DiR and SPIO nanoparticles dispersed in the shell or core. The MTT and hemolysis studies demonstrated that the nanodroplets were biocompatible and safe. Moreover, the proposed nanodroplets exhibited significant ultrasound-triggered phase transition property under clinical diagnostic ultrasound irradiation due to the vaporization of PFP inside. Meanwhile, the high stability and R2 relaxivity of the DiR-SPIO-NDs suggested its applicability in MRI. The in vivo T2-weighted images of MRI and fluorescence images both showed that the image contrast in liver and spleen of rats and mice model were enhanced after the intravenous injection of DiR-SPIO-NDs. Furthermore, the ultrasound imaging (US) in mice tumor as well as MRI and fluorescence imaging in liver of rats and mice showed that the DiR-SPIO-NDs had long-lasting contrast ability in vivo. These in vitro and in vivo findings suggested that DiR-SPIO-NDs could potentially be a great MRI/US/fluorescence multimodal imaging contrast agent in the diagnosis of liver tissue diseases.  相似文献   

3.
BackgroundNumerous studies demonstrated that exosomes play a powerful role in mediating intercellular communication to induce a pro-tumoral environment to promote tumor progression, including pre-metastatic niche formation and metastasis. Noninvasive imaging could determine the in vivo kinetics of exosomes in real time to provide better understanding of the mechanisms of the tumor formation, progression and metastasis. Magnetic resonance imaging (MRI) is an ideal technique which provides excellent anatomical resolution, intrinsic soft tissue contrast, unlimited penetration depth and no radiation exposure.MethodsA fusion protein composed of ferritin heavy chain (FTH1) and lactadherin was designed for visualizing exosomes through MRI. FTH1 was served as MRI reporter protein and lactadherin is a membrane-associated protein that is distributed on exosome surface. The characterizations of labeled exosomes were validated through transmission electron microscopy, western blot, nanoparticle tracking analysis and finally visualized in vitro and in vivo through MRI.ResultsMR imaging showed that the labeled exosomes are able to be visualized in vitro and in vivo. Verification of the characterizations of exosomes observed no significant difference between labeled and unlabeled exosomes.ConclusionThe proposed FTH1 labeling method was useful for visualizing exosomes through MRI.General significanceThe present study first reported a novel self-label method for imaging labeled exosomes of tumor cells in vivo through MR with cell endogenous MRI reporter protein. It may be further used as a tool to enhance understanding the role of exosomes in various pathophysiological conditions.  相似文献   

4.
PurposeThe use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T1) or transverse (T2) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection.ProceduresWith a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T2 weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA).ResultsBased on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T2 relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to ?4.12 ± 0.71. Dual contrast MRI also enhanced the delineation of tumor borders and small lesions.ConclusionsDC-MRI will be helpful to improve diagnostic accuracy and decrease the threshold size for lesion detection.  相似文献   

5.

Background

Liposomal-based gadolinium (Gd) nanoparticles have elicited significant interest for use as blood pool and molecular magnetic resonance imaging (MRI) contrast agents. Previous generations of liposomal MR agents contained gadolinium-chelates either within the interior of liposomes (core-encapsulated gadolinium liposomes) or presented on the surface of liposomes (surface-conjugated gadolinium liposomes). We hypothesized that a liposomal agent that contained both core-encapsulated gadolinium and surface-conjugated gadolinium, defined herein as dual-mode gadolinium (Dual-Gd) liposomes, would result in a significant improvement in nanoparticle-based T1 relaxivity over the previous generations of liposomal agents. In this study, we have developed and tested, both in vitro and in vivo, such a dual-mode liposomal-based gadolinium contrast agent.

Methodology/Principal Findings

Three types of liposomal agents were fabricated: core-encapsulated, surface-conjugated and dual-mode gadolinium liposomes. In vitro physico-chemical characterizations of the agents were performed to determine particle size and elemental composition. Gadolinium-based and nanoparticle-based T1 relaxivities of various agents were determined in bovine plasma. Subsequently, the agents were tested in vivo for contrast-enhanced magnetic resonance angiography (CE-MRA) studies. Characterization of the agents demonstrated the highest gadolinium atoms per nanoparticle for Dual-Gd liposomes. In vitro, surface-conjugated gadolinium liposomes demonstrated the highest T1 relaxivity on a gadolinium-basis. However, Dual-Gd liposomes demonstrated the highest T1 relaxivity on a nanoparticle-basis. In vivo, Dual-Gd liposomes resulted in the highest signal-to-noise ratio (SNR) and contrast-to-noise ratio in CE-MRA studies.

Conclusions/Significance

The dual-mode gadolinium liposomal contrast agent demonstrated higher particle-based T1 relaxivity, both in vitro and in vivo, compared to either the core-encapsulated or the surface-conjugated liposomal agent. The dual-mode gadolinium liposomes could enable reduced particle dose for use in CE-MRA and increased contrast sensitivity for use in molecular imaging.  相似文献   

6.
In vivo mapping of vascular inflammation using multimodal imaging   总被引:1,自引:0,他引:1  
Jarrett BR  Correa C  Ma KL  Louie AY 《PloS one》2010,5(10):e13254

Background

Plaque vulnerability to rupture has emerged as a critical correlate to risk of adverse coronary events but there is as yet no clinical method to assess plaque stability in vivo. In the search to identify biomarkers of vulnerable plaques an association has been found between macrophages and plaque stability—the density and pattern of macrophage localization in lesions is indicative of probability to rupture. In very unstable plaques, macrophages are found in high densities and concentrated in the plaque shoulders. Therefore, the ability to map macrophages in plaques could allow noninvasive assessment of plaque stability. We use a multimodality imaging approach to noninvasively map the distribution of macrophages in vivo. The use of multiple modalities allows us to combine the complementary strengths of each modality to better visualize features of interest. Our combined use of Positron Emission Tomography and Magnetic Resonance Imaging (PET/MRI) allows high sensitivity PET screening to identify putative lesions in a whole body view, and high resolution MRI for detailed mapping of biomarker expression in the lesions.

Methodology/Principal Findings

Macromolecular and nanoparticle contrast agents targeted to macrophages were developed and tested in three different mouse and rat models of atherosclerosis in which inflamed vascular plaques form spontaneously and/or are induced by injury. For multimodal detection, the probes were designed to contain gadolinium (T1 MRI) or iron oxide (T2 MRI), and Cu-64 (PET). PET imaging was utilized to identify regions of macrophage accumulation; these regions were further probed by MRI to visualize macrophage distribution at high resolution. In both PET and MR images the probes enhanced contrast at sites of vascular inflammation, but not in normal vessel walls. MRI was able to identify discrete sites of inflammation that were blurred together at the low resolution of PET. Macrophage content in the lesions was confirmed by histology.

Conclusions/Significance

The multimodal imaging approach allowed high-sensitivity and high-resolution mapping of biomarker distribution and may lead to a clinical method to predict plaque probability to rupture.  相似文献   

7.
Molecular magnetic resonance imaging (MRI) of tumors improves the specificity of MRI by using targeted probes conjugated to contrast-generating metals. The limitation of this approach is in the identification of a target molecule present in sufficient concentration for visualization and the development of a labeling reagent that can penetrate tumor tissue with the fast kinetics required for use in a clinical setting. The receptor protein tyrosine phosphatase PTPµ is a transmembrane protein that is continuously proteolyzed in the tumor microenvironment to generate a high concentration of extracellular fragment that can be recognized by the SBK2 probe. We conjugated the SBK2 peptide to a gadolinium chelate [SBK2-Tris-(Gd-DOTA)3] to test whether the SBK2 probe could be developed as an MR molecular imaging probe. When intravenously injected into mice bearing flank tumors of human glioma cells, SBK2-Tris-(Gd-DOTA)3 labeled the tumors within 5 minutes with a high level of contrast for up to 2 hours post-injection. The contrast enhancement of SBK2-Tris-(Gd-DOTA)3 was significantly higher than that observed with a current MRI macrocyclic gadolinium chelate (Gadoteridol, ProHance) alone or a scrambled control. These results demonstrate that SBK2-Tris-(Gd-DOTA)3 labeling of the PTPµ extracellular fragment is a more specific MR molecular imaging probe than ProHance or a scrambled control. Consequently, the SBK2 probe may be more useful than the current gold standard reagent for MRI to identify tumors and to co-register tumor borders during surgical resection.  相似文献   

8.

Objective

Bone-marrow derived endothelial progenitor cells (EPCs) play an important role in tumor neovasculature. Due to their tumor homing property, EPCs are regarded as promising targeted vectors for delivering therapeutic agents in cancer treatment. Consequently, non-invasive confirmation of targeted delivery via imaging is urgently needed. This study shows the development and application of a novel dual-modality probe for in vivo non-invasively tracking of the migration, homing and differentiation of EPCs.

Methods

The paramagnetic/near-infrared fluorescence probe Conjugate 1 labeled EPCs were systemically transplanted into mice bearing human breast MDA-MB-231 tumor xenografts. Magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescence optical imaging were performed at different stages of tumor development. The homing of EPCs and the tumor neovascularization were further evaluated by immunofluorescence.

Results

Conjugate 1 labeled EPCs can be monitored in vivo by MRI and NIR fluorescence optical imaging without altering tumor growth for up to three weeks after the systemic transplantation. Histopathological examination confirmed that EPCs were recruited into the tumor bed and then incorporated into new vessels two weeks after the transplantation. Tumor size and microvessel density was not influenced by EPCs transplantation in the first three weeks.

Conclusions

This preclinical study shows the feasibility of using a MRI and NIR fluorescence optical imaging detectable probe to non-invasively monitor transplanted EPCs and also provides strong evidence that EPCs are involved in the development of endothelial cells during the tumor neovascularization.  相似文献   

9.
ObjectivesTo obtain compensatory ultra-short echo time (UTE) imaging and T2-weighted (T2W) imaging of Watanabe heritable hyperlipidemic (WHHL) rabbits following dextran-coated magnetic nanocluster (DMNC) injection for the effective in vivo detection of inflammatory vascular wall.MethodsMagnetic nanoparticle was synthesized by thermal decomposition and encapsulated with dextran to prepare DMNC. The contrast enhancement efficiency of DMNC was investigated using UTE (repetition time [TR] = 5.58 and TE = 0.07 ms) and T2W (TR = 4000 and TE = 60 ms) imaging sequences. To confirm the internalization of DMNC into macrophages, DMNC-treated macrophages were visualized by cellular transmission electron microscope (TEM) and magnetic resonance (MR) imaging. WHHL rabbits expressing macrophage-rich plaques were subjected to UTE and T2W imaging before and after intravenous DMNC (120 μmol Fe/kg) treatment. Ex vivo MR imaging of plaques and immunostaining studies were also performed.ResultsPositive and negative contrast enhancement of DMNC solutions with increasing Fe concentrations were observed in UTE and T2W imaging, respectively. The relative signal intensities of the DMNC solution containing 2.9 mM Fe were calculated as 3.53 and 0.99 in UTE and T2W imaging, respectively. DMNC uptake into the macrophage cytoplasm was visualized by electron microscopy. Cellular MR imaging of DMNC-treated macrophages revealed relative signals of 3.00 in UTE imaging and 0.98 in T2W imaging. In vivo MR images revealed significant brightening and darkening of plaque areas in the WHHL rabbit 24 h after DMNC injection in UTE and T2W imaging, respectively. Ex vivo MR imaging results agreed with these in vivo MR imaging results. Histological analysis showed that DMNCs were localized to areas of inflammatory vascular wall.ConclusionsUsing compensatory UTE and T2W imaging in conjunction with DMNC is an effective approach for the noninvasive in vivo imaging of atherosclerotic plaque.  相似文献   

10.

Background

FeCo/graphitic-carbon nanocrystals (FeCo/GC) are biocompatible, high-relaxivity, multi-functional nanoparticles. Macrophages represent important cellular imaging targets for assessing vascular inflammation. We evaluated FeCo/GC for vascular macrophage uptake and imaging in vivo using fluorescence and MRI.

Methods and Results

Hyperlipidemic and diabetic mice underwent carotid ligation to produce a macrophage-rich vascular lesion. In situ and ex vivo fluorescence imaging were performed at 48 hours after intravenous injection of FeCo/GC conjugated to Cy5.5 (n = 8, 8 nmol of Cy5.5/mouse). Significant fluorescence signal from FeCo/GC-Cy5.5 was present in the ligated left carotid arteries, but not in the control (non-ligated) right carotid arteries or sham-operated carotid arteries (p = 0.03 for ligated vs. non-ligated). Serial in vivo 3T MRI was performed at 48 and 72 hours after intravenous FeCo/GC (n = 6, 270 µg Fe/mouse). Significant T2* signal loss from FeCo/GC was seen in ligated left carotid arteries, not in non-ligated controls (p = 0.03). Immunofluorescence staining showed colocalization of FeCo/GC and macrophages in ligated carotid arteries.

Conclusions

FeCo/GC accumulates in vascular macrophages in vivo, allowing fluorescence and MR imaging. This multi-functional high-relaxivity nanoparticle platform provides a promising approach for cellular imaging of vascular inflammation.  相似文献   

11.
《Translational oncology》2020,13(11):100839
Tumor targeting studies using metallic nanoparticles (NPs) have shown that the enhanced permeability and retention effect may not be sufficient to deliver the amount of intratumoral and intracellular NPs needed for effective in vivo radiosensitization. This work describes a pH-Low Insertion Peptide (pHLIP) targeted theranostic agent to enable image-guided NP-enhanced radiotherapy using a clinically feasible amount of injected NPs. Conventional gadolinium (Gd) NPs were conjugated to pHLIPs and evaluated in vitro for radiosensitivity and in vivo for mouse MRI. Cultured A549 human lung cancer cells were incubated with 0.5 mM of pHLIP-GdNP or conventional GdNP. Mass spectrometry showed 78-fold more cellular Gd uptake with pHLIP-GdNPs, and clonogenic survival assays showed 44% more enhanced radiosensitivity by 5 Gy irradiation with pHLIP-GdNPs at pH 6.2. In contrast to conventional GdNPs, MR imaging of tumor-bearing mice showed pHLIP-GdNPs had a long retention time in the tumor (>9 h), suitable for radiotherapy, and penetrated into the poorly-vascularized tumor core. The Gd-enhanced tumor corresponded with low-pH areas also independently measured by an in vivo molecular MRI technique. pHLIPs actively target cell surface acidity from tumor cell metabolism and deliver GdNPs into cells in solid tumors. Intracellular delivery enhances the effect of short-range radiosensitizing photoelectrons and Auger electrons. Because acidity is a general hallmark of tumor cells, the delivery is more general than antibody targeting. Imaging the in vivo NP biodistribution and more acidic (often more aggressive) tumors has the potential for quantitative radiotherapy treatment planning and pre-selecting patients who will likely benefit more from NP radiation enhancement.  相似文献   

12.
《Phytomedicine》2014,21(11):1292-1297
The present study was carried out to assess the photosensitizing potential of embelin, the biologically active natural product isolated from Embelia ribes in photodynamic therapy (PDT) experiments in vivo. In vitro PDT clearly indicated that embelin recorded significant cytotoxicity in Ehrlich's Ascites Carcinoma (EAC) cells, which is superior to 5-aminolevulinic acid, a known photodynamic compound. For in vivo experiments solid tumor was induced using EAC cells in the male Swiss albino mice of groups I, II, III and IV. Group I served as the control (without solid tumor), group II served as tumor bearing mice without treatment and groups III and IV served as treatments. At the completion of 4 weeks of induction, the tumor bearing mice from group III and IV were given an intraperitoneal injection with embelin (12.5 mg/kg body weight). After 24 h, tumor area in the Group III and IV animals was exposed to visible light from a 1000 W halogen lamp. The mice from groups I to III were sacrificed 2 weeks after the PDT treatment and the marker enzymes (myeloperoxidase [MPO], β-d-glucuronidase, and rhodanese) were assayed and expression of Bcl-2 and Bax were analyzed in normal and tumor tissues. Animals from group IV were sacrificed after 90 days of PDT treatment and the above mentioned parameters were recorded. Reduction in tumor volume and reversal of biochemical markers to near normal levels were observed in the treated groups. This is the first report on PDT using a natural compound for solid tumor control in vivo. The uniqueness of the mode of treatment lies in the selective uptake of the nontoxic natural compound, embelin from the medicinal plant E. ribes used in Indian system of medicine, by the solid tumor cells and their selective destruction using PDT without affecting the neighboring normal cells, which is much advantageous over radiation therapy now frequently used.  相似文献   

13.
《Cytotherapy》2014,16(1):74-83
Background aimsThis study was conducted to characterize gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA)-labeled and PKH26-labeled human umbilical cord mesenchymal stromal cells (HuMSCs) and to track them with magnetic resonance imaging (MRI) in vitro and in vivo.MethodsHuMSCs were isolated from umbilical cords and expanded in vitro. Cells were sequentially labeled with Gd-DTPA and PKH26. The labeling efficiency was determined by spectrophotometry measurements, and the longevity of Gd-DTPA maintenance was measured with MRI. The influence of double labeling on cellular biologic properties was assessed by cell proliferation, viability, differentiation, cycle and apoptosis. Transplantation of double-labeled HuMSCs or placebo was performed in 39 female Sprague-Dawley rats. Leak point pressure and maximal bladder capacity were measured in animals 6 weeks after injection.ResultsThe T1 values and signal intensity on T1-weighted imaging of labeled cells were significantly higher than the control group (P < 0.05). The signal intensity on T1-weighted imaging of labeled cells was retained >14 days in vitro and in vivo. There was no significant difference in the cell cycle, cell apoptosis, cell proliferation and cell viability between labeled and unlabeled HuMSCs (P > 0.05). After double labeling, HuMSCs were still capable of differentiating into osteoblasts and adipocytes. Periurethrally injected HuMSCs in the rats significantly improved leak point pressure and maximal bladder capacity.ConclusionsHuMSCs were successfully labeled with Gd-DTPA and PKH26. This labeling method is reliable and efficient and can be applied for tracking cells in vitro and in vivo without altering cellular biologic properties.  相似文献   

14.
ObjectivesTo investigate a multimodal, multiparametric perfusion MRI / 18F-fluoro-deoxyglucose-(18F-FDG)-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation.ResultsRegorafenib significantly (p<0.01) suppressed PF (81.1±7.5 to 50.6±16.0 mL/100mL/min), PV (12.1±3.6 to 7.5±1.6%) and PS (13.6±3.2 to 7.9±2.3 mL/100mL/min) as well as TTB (3.4±0.6 to 1.9±1.1) between baseline and day 7. Immunohistochemistry revealed significantly (p<0.03) lower tumor microvascular density (CD-31, 7.0±2.4 vs. 16.1±5.9) and tumor cell proliferation (Ki-67, 434.0 ± 62.9 vs. 663.0 ± 98.3) in the therapy group. Perfusion MRI parameters ΔPF, ΔPV and ΔPS showed strong and significant (r = 0.67-0.78; p<0.01) correlations to the PET parameter ΔTTB and significant correlations (r = 0.57-0.67; p<0.03) to immunohistochemical Ki-67 as well as to CD-31-stainings (r = 0.49-0.55; p<0.05).ConclusionsA multimodal, multiparametric perfusion MRI/PET imaging protocol allowed for non-invasive monitoring of regorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant correlations between perfusion MRI parameters and 18F-FDG-PET validated by immunohistochemistry.  相似文献   

15.
In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal in vivo imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for ex vivo tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature in situ. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) in vivo. In vivo power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous in vivo imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich imaging data sets, including over extended periods, for preclinical in vivo spinal cord research.  相似文献   

16.
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.  相似文献   

17.
ObjectiveThe aim of this study was to characterize response to photodynamic therapy (PDT) in a mouse cancer model using a multi-parametric quantitative MRI protocol and to identify MR parameters as potential biomarkers for early assessment of treatment outcome.MethodsCT26.WT colon carcinoma tumors were grown subcutaneously in the hind limb of BALB/c mice. Therapy consisted of intravenous injection of the photosensitizer Bremachlorin, followed by 10 min laser illumination (200 mW/cm2) of the tumor 6 h post injection. MRI at 7 T was performed at baseline, directly after PDT, as well as at 24 h, and 72 h. Tumor relaxation time constants (T1 and T2) and apparent diffusion coefficient (ADC) were quantified at each time point. Additionally, Gd-DOTA dynamic contrast-enhanced (DCE) MRI was performed to estimate transfer constants (Ktrans) and volume fractions of the extravascular extracellular space (ve) using standard Tofts-Kermode tracer kinetic modeling. At the end of the experiment, tumor viability was characterized by histology using NADH-diaphorase staining.ResultsThe therapy induced extensive cell death in the tumor and resulted in significant reduction in tumor growth, as compared to untreated controls. Tumor T1 and T2 relaxation times remained unchanged up to 24 h, but decreased at 72 h after treatment. Tumor ADC values significantly increased at 24 h and 72 h. DCE-MRI derived tracer kinetic parameters displayed an early response to the treatment. Directly after PDT complete vascular shutdown was observed in large parts of the tumors and reduced uptake (decreased Ktrans) in remaining tumor tissue. At 24 h, contrast uptake in most tumors was essentially absent. Out of 5 animals that were monitored for 2 weeks after treatment, 3 had tumor recurrence, in locations that showed strong contrast uptake at 72 h.ConclusionDCE-MRI is an effective tool for visualization of vascular effects directly after PDT. Endogenous contrast parameters T1, T2, and ADC, measured at 24 to 72 h after PDT, are also potential biomarkers for evaluation of therapy outcome.  相似文献   

18.
To develop a highly efficient photosensitizer for photodynamic therapy (PDT), we have designed and synthesized a phthalocyanine-lactose conjugate (Pc-Lac) through axial modification of silicon(IV) phthalocyanine with lactose moieties. With the lactose substituents, Pc-Lac is highly hydrophilic and non-aggregated with efficient reactive oxygen species (ROS) generation in aqueous media. With these desirable properties, Pc-Lac shows high photocytotoxicity and cellular uptake toward HepG2 cells. In addition, in vivo fluorescence imaging shows that Pc-Lac could selectively remain at tumor site, leading to its enhanced photodynamic efficacy against H22 tumor-bearing mice. Therefore, Pc-Lac shows a great potential as a highly efficient molecular photosensitizer for PDT.  相似文献   

19.
《Médecine Nucléaire》2014,38(6):419-428
ObjectiveExtracranial head and neck tumors classified T1 and T2, because of their small size, are more difficult to diagnose by imaging than the tumors of higher stage. The aim of this study is to evaluate and compare FDG-PET/CT and MRI accuracy for detection of small extracranial head and neck tumors.Materials and methodsA retrospective study was led on 21 patients having a histopathologically proven tumors involving the upper aerodigestive tract, classified T1 or T2 according to TNM staging, which received pre-therapeutic MRI and FDG-PET/CT. Tumoral detection ability was estimated on MRI and FDG-PET/CT by a qualitative scale. Sensitivities of the two methods of imaging were compared between then. The SUVmax and the percentage of enhancement were measured for each tumor and analysed according to T staging.ResultsAmong the 21 tumors, 17 were detected by FDG-PET/CT against 12 by MRI. None of the 4 unidentified lesions by FDG-PET/CT was visible on MRI. FDG-PET/CT correctly identified 5 of the 9 MRI false-negative results. The sensitivity was 80.9 % for FDG-PET/CT and 57.1 % for MRI, on the verge of the statistically significant difference (P = 0.06). There was no significant correlation of the SUVmax to the T staging.ConclusionFDG-PET/TDM could be useful for the identification of primary extracranial head and neck tumors, even small-sized, classified T1 or T2, with a sensitivity higher than MRI.  相似文献   

20.

Background

It is recognized that cancer cells exhibit highly elevated glucose metabolism compared to non-tumor cells. We have applied in vivo optical imaging to study dynamic uptake of a near-infrared dye-labeled glucose analogue, 2-deoxyglucose (2-DG) by orthotopic glioma in a mouse model.

Methodology and Principal Findings

The orthotopic glioma model was established by surgically implanting U87-luc glioma cells into the right caudal nuclear area of nude mice. Intracranial tumor growth was monitored longitudinally by bioluminescence imaging and MRI. When tumor size reached >4 mm diameter, dynamic fluorescence imaging was performed after an injection of the NIR labeled 2-DG, IRDye800CW 2-DG. Real-time whole body images acquired immediately after i.v. infusion clearly visualized the near-infrared dye circulating into various internal organs sequentially. Dynamic fluorescence imaging revealed significantly higher signal intensity in the tumor side of the brain than the contralateral normal brain 24 h after injection (tumor/normal ratio, TNR  = 2.8±0.7). Even stronger contrast was achieved by removing the scalp (TNR  = 3.7±1.1) and skull (TNR  = 4.2±1.1) of the mice. In contrast, a control dye, IRDye800CW carboxylate, showed little difference (1.1±0.2). Ex vivo fluorescence imaging performed on ultrathin cryosections (20 µm) of tumor bearing whole brain revealed distinct tumor margins. Microscopic imaging identified cytoplasmic locations of the 2-DG dye in tumor cells.

Conclusion and Significance

Our results suggest that the near-infrared dye labeled 2-DG may serve as a useful fluorescence imaging probe to noninvasively assess intracranial tumor burden in preclinical animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号