共查询到19条相似文献,搜索用时 78 毫秒
1.
杉木采伐迹地造林树种转变对土壤可溶性有机质的影响 总被引:3,自引:0,他引:3
以二代杉木林采伐迹地上营造的19年生米老排与杉木人工林为对象,采用冷水、热水和2 mol·L-1 KCl溶液提取0~5、5~10和10~20 cm层土壤中的可溶性有机碳(DOC)和有机氮(DON),研究造林树种转变对土壤可溶性有机质的影响.结果表明: 造林树种转变对林地土壤DOC和DON库有显著影响.米老排人工林土壤中用冷水、热水和KCl溶液浸提的DOC含量均显著高于杉木人工林,0~5和5~10 cm层土壤中用冷水和热水浸提的DON含量显著高于杉木林.不同方法浸提的DOC和DON含量大小顺序均为KCl>热水>冷水.在0~5 cm土层,米老排人工林土壤微生物生物量碳(MBC)含量比杉木林高76.3%.相关分析结果显示,热水浸提的DOC和DON与土壤MBC之间均呈显著正相关.不同树种人工林间土壤可溶性有机质的差异主要与凋落物输入的数量和质量有关.在杉木采伐迹地上营造米老排,能够明显改善土壤肥力. 相似文献
2.
黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响 总被引:4,自引:0,他引:4
研究黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征影响有助于深入理解黄土丘陵区不同植被带下土壤和土壤微生物相互作用及养分循环规律.选择黄土丘陵区延河流域3个植被区(森林区、森林草原区、草原区)和5种地形部位(阴/阳沟坡、阴/阳梁峁坡、峁顶)的土壤作为研究对象,利用生态化学计量学理论研究植被和地形对土壤和土壤微生物生物量生态化学计量特征的影响.结果表明: 土壤及土壤微生物生物量碳、氮、磷含量在不同地形之间的差别主要表现在沟坡位置和阴坡高于其他坡位和阳坡.植被类型的变化对两个土层(0~10、10~20 cm)土壤和土壤微生物生物量碳、氮、磷的影响均达到显著水平,坡向对表层(0~10 cm)土壤和土壤微生物生物量碳、氮、磷的影响强于坡位,而在10~20 cm土层,坡位对土壤和土壤微生物生物量碳、氮、磷影响更显著.植被类型显著影响土壤C∶N、C∶P、N∶P和土壤微生物生物量C∶N、C∶P,坡向和坡位仅影响土壤C∶P和N∶P,植被类型的变化是影响土壤C∶N的主要因素.同时,植被类型对土壤养分和微生物生物量碳、氮、磷含量及其生态化学计量特征的影响大于地形因子.标准化主轴分析结果表明,黄土丘陵区不同植被带土壤微生物具有内稳性,特别在草原带,土壤微生物生物量生态化学计量学特征具有更加严格的约束比例.在黄土丘陵区,土壤微生物生物量N∶P或许可以作为判断养分限制的另一个有力工具,若将土壤微生物生物量N∶P与植物叶片N∶P配合使用可能有助于我们更加精确地判断黄土丘陵区的土壤养分限制情况. 相似文献
3.
4.
杉木采伐迹地营造阔叶树对不同层次土壤磷组分和有效性的影响 总被引:2,自引:0,他引:2
磷限制是亚热带人工林经营面临的主要问题之一,研究阔叶树代替针叶树造林对不同土壤层次磷组分和有效性的影响对维持亚热带地区森林生态系统的可持续发展具有重要意义。以1993 年春天在二代杉木林采伐迹地上同时营造的阔叶树米老排人工林和针叶树杉木人工林为对象,研究0~100 cm不同土层土壤理化性质、磷组分及其有效性的变化。结果表明: 两种林分下土壤有机磷含量均随土层加深而显著下降;与杉木林相比,米老排林0~10 和10~20 cm土层有效磷含量显著增加,分别增加35.7%和86.2%,易分解态磷和中等易分解态磷均随土层加深而显著降低,表层(0~20 cm)土壤易分解态磷和中等易分解态磷含量显著增加,80~100 cm土层难分解态磷含量显著降低,下降13.6%,20~80 cm土层游离态铁含量显著降低。冗余分析表明,可溶性有机碳和游离态铁是土壤磷组分变化的关键影响因子。在杉木采伐迹地上营造阔叶树改变了磷在土壤剖面上的分布格局,有利于提高磷的有效性。 相似文献
5.
为了深入了解古尔班通古特沙漠植物在极端环境下养分循环及限制状况,以琉苞菊(Hyalea pulchella)、假狼紫草(Nonea caspica)、尖喙牻牛儿苗(Erodium oxyrrhynchum)和飘带果(Lactuca undulata)为研究对象,分析了4种短命植物的生物量与化学计量特征变化以及二者之间的相关性。结果表明,(1)4种荒漠植物生物量分配在整个生长周期内呈一致增长规律,而根冠比(R/S)均呈下降趋势;生物量累计速率在各生长期不尽相同,但4种植物随生活史的完成最终分配比例趋同。(2)4种植物的C元素在整个生长周期内居高不下,N、P元素在植物体内总体呈下降趋势。对计量比分析发现,C∶N与C∶P间呈正相关关系,且二者都与N∶P呈负相关关系,但N∶P则相比旱生植物的平均值低。(3)生物量与化学计量比的综合排序显示:第1轴、第2轴的解释程度分别为58.89%和19.43%,可累计解释其总信息量的78.32%,表明可信度较高,但整体指标间的相关性较弱,说明4种荒漠短命植物生长过程中的化学计量比并未对生物量分配起决定作用,可能是由于干旱环境下植物的不同生存策略所引起的结果,或生物量分配的主要占比因素可能是植物自身遗传所决定的。 相似文献
6.
控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响 总被引:2,自引:0,他引:2
以宁夏荒漠草原为研究对象,于2014—2015年设置了降雨量变化(减雨50%、减雨30%、自然降雨、增雨30%和增雨50%)的野外模拟试验,测定了植物、微生物和土壤C、N、P含量,同时调查了植物群落组成和土壤含水量等指标,研究了各组分C、N、P化学计量特征对连续两年降雨量变化的响应,分析了土壤C∶N∶P和含水量分别与植物生长、养分利用以及微生物量积累的相关性。结果表明,控雨改变了植物叶片C∶N∶P,且其影响程度随物种不同而异:减雨50%提高了牛枝子(Lespedeza potanimill)绿叶N和P以及猪毛蒿(Artemisia scoparia)绿叶P摄取能力,增雨(30%和50%)降低了猪毛蒿绿叶N摄取能力。增雨提高了猪毛蒿绿叶C∶N,增雨30%提高了苦豆子(Sophora alopecuroides)绿叶C∶N。增雨降低了猪毛蒿绿叶N∶P,增雨30%降低了白草(Pennisetum centrasiaticum)绿叶N∶P。相比之下,控雨条件下枯叶C∶N∶P的变化幅度较小;随降雨量增加微生物量C、N以及C∶N逐渐增加,但增雨50%使微生物量C和C∶N降低;控雨对土壤C∶N∶P的影响较小,但增雨提高了土壤水分有效性,因此促进了植物和微生物生长;试验期内,相对稳定的土壤C∶N∶P不能很好地指示植物和微生物生长发育的养分受限状况;干旱时提高叶片养分摄取、湿润时增强叶片养分回收,可能解释了牛枝子对降雨量变化的弹性适应能力。 相似文献
7.
不同海拔云南松林土壤养分及其生态化学计量特征 总被引:1,自引:0,他引:1
以云南东北部不同海拔云南松天然次生林为研究对象,比较不同海拔土壤有机碳(C)、全氮(N)、全磷(P)、全钾(K)、碱解氮(AN)、有效磷(AP)、速效钾(AK)及其化学计量特征.结果 表明:海拔间土壤C、N、P、K、AN、AP、AK的值分别为7.85~31.61 g·kg-1、1.08~2.11 g·kg-1、0.19... 相似文献
8.
微生物生物量及其化学计量特征是土壤养分循环的重要参数, 对预测气候变化和提高模型准确性及理解陆地生态系统养分循环都起到重要作用。为了明晰高寒生态系统土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量磷(MBP)浓度及其化学计量特征, 该研究通过在三江源区高寒湿地连续两年的野外调查和室内培养, 分析了50个样点的数据, 探究三江源高寒湿地MBC、MBN、MBP浓度及其化学计量特征, 明确了土壤理化特性和微生物群落特征对其影响。结果表明: (1)三江源高寒湿地MBC、MBN和MBP浓度分别为105.11、3.79和0.78 mmol·kg-1, MBC:MBN、MBC:MBP、MBN:MBP和MBC:MBN:MBP分别为50.56、184.89、5.42和275:5:1。高寒湿地土壤的MBC浓度显著高于高寒草甸土壤, 而MBN和MBP浓度在高寒湿地和高寒草甸土壤之间没有显著差异; 高寒湿地土壤的MBC:MBN和MBC:MBP显著高于高寒草甸土壤, 而MBN:MBP在高寒湿地和高寒草甸土壤之间差异不显著。(2)土壤理化特性与MBC、MBN和MBP浓度具有显著相关性。土壤含水率与MBC:MBN和MBC:MBP存在显著负相关关系, 而土壤密度与MBC:MBN和MBC:MBP浓度存在显著正相关关系, 土壤全氮含量和MBC:MBP存在显著负相关关系, 而与MBC:MBN的相关关系不显著。土壤理化特性对MBN:MBP的影响不显著。(3)整体而言, 微生物群落结构与MBC、MBN和MBP浓度之间存在显著的相关性。微生物群落结构和MBC:MBN、MBC:MBP的关系是相似的, 总磷脂脂肪酸(PLFA)含量、革兰氏阳性菌、革兰氏阴性菌、细菌、放线菌、丛枝菌根真菌浓度和其他PLFA含量与MBC:MBN和MBC:MBP存在显著负相关关系, 而真菌:细菌与MBC:MBN和MBC:MBP之间存在显著正相关关系, 真菌浓度与MBC:MBN和MBC:MBP之间的相关关系不显著。除丛枝菌根真菌外, MBN:MBP与微生物群落结构均无显著相关关系。 相似文献
9.
全球范围内的氮沉降增加改变了生态系统氮(N)素循环过程,由此带来的生态学效应已成为当前研究的热点。以昆仑山高山草地生态系统2种优势植物黄花棘豆(Oxytropis ochrocephala)和针茅(Stipa capillata)为研究对象,开展人工氮肥添加试验,研究土壤-微生物-植物系统各组分生态化学计量特征对氮添加的响应特征。结果表明:①氮添加显著提高了土壤NH4^+-N和土壤NO3^--N含量(P<0.05),土壤全N、全磷(P)、速效P含量没有明显变化。②氮添加条件下针茅叶片N含量增加,P含量降低,而黄花棘豆N和P含量无明显变化。③土壤微生物量碳(MBC)和微生物量氮(MBN)随着施氮量的增加呈现出先增加后降低的趋势,当施氮量为6N·m^-2·y^-1时呈现出最高值。土壤NH4+-N含量与土壤微生物量N含量有显著的正相关关系(P<0.01)。综合分析表明,短期氮添加有利于土壤养分和微生物量的积累,促进植物和微生物养分吸收利用。2种优势植物的生态化学计量特征对氮沉降的响应不同,过量的氮输入将会造成植物生长受到P限制,氮沉降会改变昆仑山高山草地生态系统的生物地球化学循环过程。 相似文献
10.
11.
杉木人工林土壤微生物生物量碳氮特征及其与土壤养分的关系 总被引:11,自引:4,他引:11
研究了湖南会同红黄壤区杉木人工林和常绿阔叶林土壤微生物量和养分状况.结果表明,该区杉木人工林取代地带性常绿阔叶林和杉木连栽后,土壤微生物碳、氮和土壤养分含量下降,土壤严重退化.在0~10 cm土层内,常绿阔叶林土壤微生物碳和氮含量为800.5和84.5 mg·kg-1,分别是第1代杉木林的1.90和1.03倍、第2代杉木林的2.16和1.27倍;在10~20 cm土层内,常绿阔叶林土壤微生物碳和氮含量为475.4和63.3 mg·kg-1,分别是第1代杉木纯林的1.86、1.60倍和第2代杉木林的2.11和1.76倍.在0~10 cm 和10~20cm土层内,杉木人工林取代常绿阔叶林和杉木栽植代数增加后,土壤全氮、全钾、铵态氮和速效钾含量均明显降低,但差异并不显著.人工杉木林林分组成单一,其凋落物分解慢、归还养分数量少;炼山等造成的表土流失是杉木人工林土壤微生物量和养分库退化的重要原因.土壤微生物碳与土壤全氮、铵态氮、全钾和速效钾含量呈极显著的正相关,土壤微生物氮与土壤养分含量也达到极显著水平. 相似文献
12.
杉木人工林土壤微生物群落结构特征 总被引:10,自引:0,他引:10
采用氯仿熏蒸法、稀释平板法和磷脂脂肪酸(phospholipid fatty acid,PLFA)方法,分析了常绿阔叶林转变成杉木人工林后土壤微生物种群数量和群落结构的变化特征.结果表明:常绿阔叶林转变为杉木人工林后,林地土壤的微生物生物量碳、可培养细菌和放线菌数降低.杉木人工林地总PLFAs、细菌PLFAs、真菌PLFAs比常绿阔叶林分别降低了49.4%、52.4%和46.6%,革兰氏阳性和阴性细菌PLFAs远低于常绿阔叶林.杉木人工林根际土壤微生物生物量碳、可培养细菌和放线菌数显著高于杉木人工林林地土壤,根际土壤中总PLFAs、细菌PLFAs、革兰氏阳性和阴性细菌PLFAs的含量也高于林地土壤,但真菌PLFAs和细菌PLFAs之比却低于林地土壤.对土壤微生物群落结构进行主成分分析发现,第1主成分和第2主成分共解释了土壤微生物群落结构变异的78.2%.表明常绿阔叶林与杉木人工林土壤的微生物群落结构间存在差异. 相似文献
13.
通过分析杉木采伐迹地营造阔叶树种尾巨桉和固氮树种黑木相思人工林后土壤微生物群落组成和酶活性,探讨造林树种转换对于改善杉木林地土壤微生物特性的影响.结果表明: 树种转换对土壤微生物群落组成和酶活性的影响主要局限于0~10 cm土壤层.杉木转换为固氮树种黑木相思后,显著提高了0~10 cm土壤层总脂肪酸含量、真菌、革兰氏阳性细菌、革兰氏阴性细菌和放线菌生物量.主成分分析表明,黑木相思人工林土壤微生物群落组成与杉木和尾巨桉人工林具有显著差异,土壤中革兰氏阳性细菌、阴性细菌和放线菌丰度显著提高.在0~10 cm土壤层,黑木相思人工林土壤纤维素水解酶、乙酰氨基-葡萄糖苷酶和酸性磷酸酶活性均显著高于杉木和尾巨桉人工林.研究表明,杉木转变为固氮树种黑木相思后会显著提高微生物生物量和酶活性,有助于土壤有机质的恢复,加快养分循环过程. 相似文献
14.
杉木人工林取代天然次生阔叶林对土壤生物活性的影响 总被引:17,自引:0,他引:17
对我国亚热带南、中、北3个区带杉木人工林与天然次生阔叶林表层土壤化学性状、土壤生物活性特征进行研究.结果表明,杉木人工林取代天然次生林阔叶林后表层土壤总有机碳含量下降31.51%~58.24%,土壤全氮、全磷、pH值以及土壤C/N、C/P比亦呈下降趋势;杉木人工林取代天然次生阔叶林后表层土壤细菌、真菌数量减少;土壤脲酶、蔗糖酶、过氧化氢酶和脱氢酶活性下降,而土壤多酚氧化酶活性增加8%~40%;杉木人工林与天然次生林阔叶林相比,土壤呼吸强度下降51.15%~54.48%.相关分析发现,土壤总有机碳与土壤多酚氧化酶活性呈负相关(R=-0.723,n=18),与土壤全氮、全磷及其它土壤酶活性呈正相关.杉木人工林取代天然次生林阔叶林使林内表层土壤质量恶化.杉木人工林土壤有机质丢失是导致杉木人工林土壤养分减少、土壤生物活性下降的重要原因. 相似文献
15.
氮磷添加对亚热带常绿阔叶林土壤微生物群落特征的影响 总被引:7,自引:0,他引:7
为了探讨氮磷添加对土壤微生物特点的影响,选择安徽省池州仙寓山常绿阔叶老龄林,设定了4个水平的氮磷添加试验,即对照(CK,0 kg N/hm~2)、低氮(LN,50 kg N/hm~2)、高氮(HN,100 kg N/hm~2)、高氮+磷(HN+P,100 kg N/hm~2+50 kg P/hm~2)。利用氯仿熏蒸法和Biolog微平板技术,分析不同水平氮磷添加对不同土层(0-10 cm、10-20 cm和20-30 cm)土壤微生物生物量C(MBC)、N(MBN)和微生物群落功能多样性的影响。结果表明:MBC、MBN随土层加深而降低,且差异性极显著,MBC与MBC/MBN比在氮磷添加后均表现出显著性差异;土壤微生物群落的代谢活性随土层加深而降低,HN与LN处理的土壤微生物活性最高;Mc Intosh、Shannon和Simpson多样性指数在不同土层和不同N、P添加水平上都存在差异,表层土壤微生物多样性指数差异性较为显著。土壤微生物对羧酸类、氨基酸类和碳水类碳源利用率最高;主成分分析显示不同土层的土壤微生物碳源利用上有明显的变化,表层土壤微生物碳源利用在不同N、P添加水平上有明显的空间变异性,其他土层分布较为集中,空间差异性主要表现在对碳水类与羧酸类碳源的利用上。土层与氮、磷添加剂量对土壤微生物生物量C、N及功能多样性都有显著影响,其中高氮处理对表层土壤微生物影响最大。 相似文献
16.
17.
湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响 总被引:3,自引:0,他引:3
研究了湖南省会同县森林植被从地带性植被天然常绿阔叶林到杉木人工林再到杉木火力楠混交林的转变过程中土壤微生物生物量碳和酶活性的变化趋势。结果表明:杉木纯林和混交林土壤微生物生物量碳含量均显著低于常绿阔叶林,分别仅为常绿阔叶林的76.8%和71.5%;与天然阔叶林相比,杉木人工林土壤蔗糖酶、脲酶和磷酸酶活性分别降低了35.8%、22.1%和45.1%,而多酚氧化酶活性增高了40.0%;相反,杉木火力楠混交林土壤蔗糖酶、脲酶和磷酸酶活性比杉木纯林分别增加了20.3%、12.6%和67.8%,而土壤多酚氧化酶活性则降低了41.0%;表明森林植被转变对土壤微生物生物量碳和土壤酶活性能够产生较大的影响,不同的树种对土壤微生物生物量碳和土壤酶活性的影响差异较大。 相似文献
18.
降水变化对红松阔叶林土壤微生物生物量生长季动态的影响 总被引:6,自引:0,他引:6
红松阔叶林是中国东北山区地带性顶极植被,具有重要的生态学意义,长白山是研究温带森林对大气降水变化正负反馈的理想地带.本文以长白山原始红松阔叶林为对象,研究了土壤微生物生物量碳和氮对降水变化的响应.结果表明:在5-9月的生长季中,土壤微生物生物量碳和氮平均值分别为879.09和100.03 mg·kg-1,二者均随土壤深度增加呈下降趋势.随着降水量的增加,土壤微生物生物量碳、氮均增加,且0~5 cm表层土比5~10 cm表层土变化剧烈;土壤微生物生物量碳氮比随降水增加呈下降趋势.降水变化对土壤微生物生物量碳和氮的平均值影响显著,降水增加的影响更为突出.微生物生物量碳和氮在生长季内呈现出相似的变化规律,5月最低,之后先升高后降低再升高,出现1~2个波峰,但峰值大小和出现时间随降水量和土壤层次而变,0~5 cm土层的微生物生物量碳和氮的季节变化较大.微生物生物量碳、氮分别与土壤有机质和总氮含量呈显著正相关.不同降水条件下土壤理化性质的差异与土壤微生物生物量碳、氮的时空异质性紧密相关.降水变化可使土壤微生物群落结构与组成发生改变. 相似文献
19.
杉木人工林凋落物生态化学计量与土壤有效养分对长期模拟氮沉降的响应 总被引:2,自引:0,他引:2
凋落物分解的快慢和养分释放的速度决定了生态系统中土壤有效养分的供应。探讨全球变化条件下森林生态系统凋落物与土壤养分的变化规律,有利于深入认识凋落物-土壤相互作用的养分调控因素,从而揭示生态系统C、N、P循环。通过模拟氮沉降增加试验,分4个水平处理,分别为0、60、120、240 kg N hm~(-2)a~(-1)。模拟氮沉降13年后,分析了杉木人工林凋落物中不同组分(落叶、落枝、落果)生态化学计量与土壤有效养分(有效氮、碱解氮、速效磷、速效钾)的关系。结果表明:氮沉降(N1、N2和N3)显著提高了落叶和落枝的N含量,平均增幅分别为35.27%和32.21%;高水平氮沉降(N3)处理显著降低了落叶和落枝的C/N,平均降幅分别为25.95%和22.32%,但N3增加了落枝和落果N/P,平均增幅分别为38.4%和31.7%;氮沉降对凋落物各组分的C、P和C/P均影响不显著。氮沉降处理显著增加了土壤NO_3~--N和NH_4~+-N含量,均表现为N3N2N1N0,其中NO_3~--N含量更容易受氮沉降处理的影响,表现为更大的增幅。N2显著增加0—20 cm土层的碱解氮含量,N1显著降低0—20 cm土层的速效钾,但氮沉降对速效磷含量没有影响。凋落物生态化学计量与土壤有效养分之间的Pearson相关和冗余分析(RDA)表明,凋落物生态化学计量与土壤有效养分之间关系紧密,凋落物P含量(蒙特卡罗检验,P=0.018)和C/P比值(P=0.037)对土壤有效养分影响显著。凋落物中C/N比值、C/P比值与土壤有效养分呈显著负相关,其比值越高越不利于土壤有效养分的累积。 相似文献