首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

CD37 is an internalizing B-cell antigen expressed on Non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia cells (CLL). The anti-CD37 monoclonal antibody HH1 was conjugated to the bifunctional chelator p-SCN-Bn-DOTA and labelled with the beta-particle emitting radionuclide 177Lu creating the radio-immunoconjugate (RIC) 177Lu-DOTA-HH1 (177Lu-HH1, trade name Betalutin). The present toxicity study was performed prior to initiation of clinical studieswith 177Lu-HH1.

Methodology/Principal Findings

Nude mice with or without tumor xenografts were treated with 50 to 1000 MBq/kg 177Lu- HH1 and followed for clinical signs of toxicity up to ten months. Acute, life threatening bone marrow toxicity was observed in animals receiving 800 and 1000 MBq/kg 177Lu-HH1. Significant changes in serum concentrations of liver enzymes were evident for treatment with 1000 MBq/kg 177Lu-HH1. Lymphoid depletion, liver necrosis and atrophy, and interstitial cell hyperplasia of the ovaries were also observed for mice in this dose group.

Conclusions/Significance

177Lu-DOTA-HH1 was well tolerated at dosages about 10 times above those considered relevant for radioimmunotherapy in patients with B-cell derived malignancies.The toxicity profile was as expected for RICs. Our experimental results have paved the way for clinical evaluation of 177Lu-HH1 in NHL patients.  相似文献   

2.

Background

To date, inefficient delivery of therapeutic doses of radionuclides to solid tumors limits the clinical utility of radioimmunotherapy. We aim to test the therapeutic utility of Yttrium-90 (90Y)-radio-conjugates of a monoclonal antibody, which we showed previously to bind specifically to the abundant intracellular La ribonucleoprotein revealed in dead tumor cells after DNA-damaging treatment.

Methodology/Principal Findings

Immunoconjugates of the DAB4 clone of the La-specific monoclonal antibody, APOMAB®, were prepared using the metal chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and then radiolabeled with 90Y. Mice bearing established subcutaneous tumors were treated with 90Y-DOTA-DAB4 alone or after chemotherapy. Non-radiosensitizing cyclophosphamide/etoposide chemotherapy was used for the syngeneic EL4 lymphoma model. Radiosensitizing cisplatin/gemcitabine chemotherapy was used for the syngeneic Lewis Lung carcinoma (LL2) model, and for the xenograft models of LNCaP prostatic carcinoma and Panc-1 pancreatic carcinoma. We demonstrate the safety, specificity, and efficacy of 90Y-DOTA-DAB4-radioimmunotherapy alone or combined with chemotherapy. EL4 lymphoma-bearing mice either were cured at higher doses of radioimmunotherapy alone or lower doses of radioimmunotherapy in synergy with chemotherapy. Radioimmunotherapy alone was less effective in chemo- and radio-resistant carcinoma models. However, radioimmunotherapy synergized with radiosensitizing chemotherapy to retard significantly tumor regrowth and so prolong the survival of mice bearing LL2, LNCaP, or Panc-1 subcutaneous tumor implants.

Conclusions/Significance

We report proof-of-concept data supporting a unique form of radioimmunotherapy, which delivers bystander killing to viable cancer cells after targeting the universal cancer antigen, La, created by DNA-damaging treatment in neighboring dead cancer cells. Subsequently we propose that DAB4-targeted ionizing radiation induces additional cycles of tumor cell death, which further augments DAB4 binding to produce a tumor-lethal ‘genotoxic chain reaction’. Clinically, this approach may be useful as consolidation treatment after a drug-induced cell death among (small-volume) metastatic deposits, the commonest cause of cancer death.This article is part II of a two-part series providing proof-of-concept for the diagnostic and therapeutic use of the DAB4 clone of the La-specific monoclonal antibody, APOMAB®.  相似文献   

3.

Objective

Pancreatic cancer is an aggressive tumor and the prognosis remains poor. Therefore, development of more effective therapy is needed. We previously reported that 89Zr-labeled TSP-A01, an antibody against transferrin receptor (TfR), is highly accumulated in a pancreatic cancer xenograft, but not in major normal organs. In the present study, we evaluated the efficacy of radioimmunotherapy (RIT) with 90Y-TSP-A01 in pancreatic cancer mouse models.

Methods

TfR expression in pancreatic cancer cell lines (AsPC-1, BxPC-3, MIAPaCa-2) was evaluated by immunofluorescence staining. 111In-labeled anti-TfR antibodies (TSP-A01, TSP-A02) were evaluated in vitro by cell binding assay with the three cell lines and by competitive inhibition assay with MIAPaCa-2. In vivo biodistribution was evaluated in mice bearing BxPC-3 and MIAPaCa-2 xenografts. Tumor volumes of BxPC-3 and MIAPaCa-2 were sequentially measured after 90Y-TSP-A01 injection and histological analysis of tumors was conducted.

Results

MIAPaCa-2 cells showed the highest TfR expression, followed by AsPC-1 and BxPC-3 cells. 111In-TSP-A01 and 111In-TSP-A02 bound specifically to the three cell lines according to TfR expression. The dissociation constants for TSP-A01, DOTA-TSP-A01, TSP-A02, and DOTA-TSP-A02 were 0.22, 0.28, 0.17, and 0.22 nM, respectively. 111In-TSP-A01 was highly accumulated in tumors, especially in MIAPaCa-2, but this was not true of 111In-TSP-A02. The absorbed dose for 90Y-TSP-A01 was estimated to be 8.3 Gy/MBq to BxPC-3 and 12.4 Gy/MBq to MIAPaCa-2. MIAPaCa-2 tumors treated with 3.7 MBq of 90Y-TSP-A01 had almost completely disappeared around 3 weeks after injection and regrowth was not observed. Growth of BxPC-3 tumors was inhibited by 3.7 MBq of 90Y-TSP-A01, but the tumor size was not reduced.

Conclusion

90Y-TSP-A01 treatment achieved an almost complete response in MIAPaCa-2 tumors, whereas it merely inhibited the growth of BxPC-3 tumors. 90Y-TSP-A01 is a promising RIT agent for pancreatic cancer, although further investigation is necessary to improve the efficacy for the radioresistant types like BxPC-3.  相似文献   

4.
Small cell lung cancer (SCLC) is an aggressive tumor and prognosis remains poor. Therefore, the development of more effective therapy is needed. We previously reported that high levels of an anti-c-kit antibody (12A8) accumulated in SCLC xenografts. In the present study, we evaluated the efficacy of two antibodies (12A8 and 67A2) for radioimmunotherapy (RIT) of an SCLC mouse model by labeling with the 90Y isotope.

Methods

111In- or 125I-labeled antibodies were evaluated in vitro by cell binding, competitive inhibition and cellular internalization assays in c-kit-expressing SY cells and in vivo by biodistribution in SY-bearing mice. Therapeutic efficacy of 90Y-labeled antibodies was evaluated in SY-bearing mice upto day 28 and histological analysis was conducted at day 7.

Results

[111In]12A8 and [111In]67A2 specifically bound to SY cells with high affinity (8.0 and 1.9 nM, respectively). 67A2 was internalized similar to 12A8. High levels of [111In]12A8 and [111In]67A2 accumulated in tumors, but not in major organs. [111In]67A2 uptake by the tumor was 1.7 times higher than for [111In]12A8. [90Y]12A8, but not [90Y]67A2, suppressed tumor growth in a dose-dependent manner. Tumors treated with 3.7 MBq of [90Y]12A8, and 1.85 and 3.7 MBq of [90Y]67A2 (absorbed doses were 21.0, 18.0 and 35.9 Gy, respectively) almost completely disappeared approximately 2 weeks after injection, and regrowth was not observed except for in one mouse treated with 1.85 MBq [90Y]67A2. The area of necrosis and fibrosis increased depending on the RIT effect. Apoptotic cell numbers increased with increased doses of [90Y]12A8, whereas no dose-dependent increase was observed following [90Y]67A2 treatment. Body weight was temporarily reduced but all mice tolerated the RIT experiments well.

Conclusion

Treatment with [90Y]12A8 and [90Y]67A2 achieved a complete therapeutic response when SY tumors received an absorbed dose greater than 18 Gy and thus are promising RIT agents for metastatic SCLC cells at distant sites.  相似文献   

5.

Background

Short-term toxicological evaluations of alpha-radioimmunotherapy have been reported in preclinical assays, particularly using bismuth-213 (213Bi). Toxicity is greatly influenced not only by the pharmacokinetics and binding specificity of the vector but also by non-specific irradiation due to the circulating radiopharmaceutical in the blood. To assess this, an acute and chronic toxicity study was carried out in mice injected with 213Bi-labelled Bovine Serum Albumin (213Bi-BSA) as an example of a long-term circulating vector.

Method

Biodistribution of 213Bi-BSA and 125I-BSA were compared in order to evaluate 213Bi uptake by healthy organs. The doses to organs for injected 213Bi-BSA were calculated. Groups of nude mice were injected with 3.7, 7.4 and 11.1 MBq of 213Bi-BSA and monitored for 385 days. Plasma parameters, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine, were measured and blood cell counts (white blood cells, platelets and red blood cells) were performed. Mouse organs were examined histologically at different time points.

Results

Haematological toxicity was transient and non-limiting for all evaluated injected activities. At the highest injected activity (11.1 MBq), mice died from liver and kidney failure (median survival of 189 days). This liver toxicity was identified by an increase in both ALT and AST and by histological examination. Mice injected with 7.4 MBq of 213Bi-BSA (median survival of 324 days) had an increase in plasma BUN and creatinine due to impaired kidney function, confirmed by histological examination. Injection of 3.7 MBq of 213Bi-BSA was safe, with no plasma enzyme modifications or histological abnormalities.

Conclusion

Haematological toxicity was not limiting in this study. Liver failure was observed at the highest injected activity (11.1 MBq), consistent with liver damage observed in human clinical trials. Intermediate injected activity (7.4 MBq) should be used with caution because of the risk of long-term toxicity to kidneys.  相似文献   

6.
7.
177Lu-DOTA-HH1 (177Lu-HH1) is a novel anti-CD37 radioimmunoconjugate developed to treat non-Hodgkin lymphoma. Mice with subcutaneous Ramos xenografts were treated with different activities of 177Lu-HH1, 177Lu-DOTA-rituximab (177Lu-rituximab) and non-specific 177Lu-DOTA-IgG1 (177Lu-IgG1) and therapeutic effect and toxicity of the treatment were monitored. Significant tumor growth delay and increased survival of mice were observed in mice treated with 530 MBq/kg 177Lu-HH1 as compared with mice treated with similar activities of 177Lu-rituximab or non-specific 177Lu-IgG1, 0.9% NaCl or unlabeled HH1. All mice injected with 530 MBq/kg of 177Lu-HH1 tolerated the treatment well. In contrast, 6 out of 10 mice treated with 530 MBq/kg 177Lu-rituximab experienced severe radiation toxicity. The retention of 177Lu-rituximab in organs of the mononuclear phagocyte system was longer than for 177Lu-HH1, which explains the higher toxicity observed in mice treated with 177Lu-rituximab. In vitro internalization studies showed that 177Lu-HH1 internalizes faster and to a higher extent than 177Lu-rituximab which might be the reason for the better therapeutic effect of 177Lu-HH1.  相似文献   

8.

Background and Purpose

We assessed the contribution of antibody internalization in the efficacy and toxicity of intraperitoneal α-radioimmunotherapy (RIT) of small volume carcinomatosis using 212Pb-labeled monoclonal antibodies (mAbs) that target HER2 (internalizing) or CEA (non-internalizing) receptors.

Materials and Methods

Athymic nude mice bearing 2–3 mm intraperitoneal tumor xenografts were intraperitoneally injected with similar activities (370, 740 and 1480 kBq; 37 MBq/mg) of 212Pb-labeled 35A7 (anti-CEA), trastuzumab (anti-HER2) or PX (non-specific) mAbs, or with equivalent amounts of unlabeled mAbs, or with NaCl. Tumor volume was monitored by bioluminescence and survival was reported. Hematologic toxicity and body weight were assessed. Biodistribution of 212Pb-labeled mAbs and absorbed dose-effect relationships using MIRD formalism were established.

Results

Transient hematological toxicity, as revealed by white blood cells and platelets numbering, was reported in mice treated with the highest activities of 212Pb-labeled mAbs. The median survival (MS) was significantly higher in mice injected with 1.48 MBq of 212Pb-35A7 (non-internalizing mAbs) (MS = 94 days) than in animals treated with the same activity of 212Pb-PX mAbs or with NaCl (MS = 18 days). MS was even not reached after 130 days when follow-up was discontinued in mice treated with 1.48 MBq of 212Pb-trastuzumab. The later efficacy was unexpected since final absorbed dose resulting from injection of 1.48 MBq, was higher for 212Pb-35A7 (35.5 Gy) than for 212Pb-trastuzumab (27.6 Gy). These results also highlight the lack of absorbed dose-effect relationship when mean absorbed dose was calculated using MIRD formalism and the requirement to perform small-scale dosimetry.

Conclusions

These data indicate that it might be an advantage of using internalizing anti-HER2 compared with non-internalizing anti-CEA 212Pb-labeled mAbs in the therapy of small volume xenograft tumors. They support clinical investigations of 212Pb-mAbs RIT as an adjuvant treatment after cytoreductive surgery in patients with peritoneal carcinomatosis.  相似文献   

9.

Introduction

Samarium-153 (153Sm) styrene divinylbenzene microparticles were developed as a surrogate for Yttrium-90 (90Y) microspheres in liver radioembolization therapy. Unlike the pure beta emitter 90Y, 153Sm possess both therapeutic beta and diagnostic gamma radiations, making it possible for post-procedure imaging following therapy.

Methods

The microparticles were prepared using commercially available cation exchange resin, Amberlite IR-120 H+ (620–830 μm), which were reduced to 20–40 μm via ball mill grinding and sieve separation. The microparticles were labelled with 152Sm via ion exchange process with 152SmCl3, prior to neutron activation to produce radioactive 153Sm through 152Sm(n,γ)153Sm reaction. Therapeutic activity of 3 GBq was referred based on the recommended activity used in 90Y-microspheres therapy. The samples were irradiated in 1.494 x 1012 n.cm-2.s-1 neutron flux for 6 h to achieve the nominal activity of 3.1 GBq.g-1. Physicochemical characterisation of the microparticles, gamma spectrometry, and in vitro radiolabelling studies were carried out to study the performance and stability of the microparticles.

Results

Fourier Transform Infrared (FTIR) spectroscopy of the Amberlite IR-120 resins showed unaffected functional groups, following size reduction of the beads. However, as shown by the electron microscope, the microparticles were irregular in shape. The radioactivity achieved after 6 h neutron activation was 3.104 ± 0.029 GBq. The specific activity per microparticle was 53.855 ± 0.503 Bq. Gamma spectrometry and elemental analysis showed no radioactive impurities in the samples. Radiolabelling efficiencies of 153Sm-Amberlite in distilled water and blood plasma over 48 h were excellent and higher than 95%.

Conclusion

The laboratory work revealed that the 153Sm-Amberlite microparticles demonstrated superior characteristics for potential use in hepatic radioembolization.  相似文献   

10.

Introduction

Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer’s oxidative phosphorylation system.

Methods

Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content).

Results

Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention.

Conclusions

Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose that a ketogenic diet and/or calorie restriction should be further evaluated as a possible adjuvant therapy for patients undergoing treatment for neuroblastoma.  相似文献   

11.

Introduction

Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown.

Objective

We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na+ channel (βENaC).

Methods

βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured.

Results

Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements.

Conclusions

We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.  相似文献   

12.
13.

Objective

Aliskiren is a direct renin inhibitor which is suggested to modify proangiogenic cells in addition to lower blood pressure. Given that angiogenesis is impaired in the presence of diabetes mellitus, we would like to investigate whether and how aliskiren enhances endothelial progenitor cells (EPCs) and improves ischemic-induced neovasculogenesis by an effect independent of blood pressure reduction in diabetic animals.

Methods

Streptozotocin-induced diabetic mice were administered with either aliskiren (5 or 25 mg/kg/day) using an osmotic pump or hydralazine (2 or 10 mg/kg/day) given in drinking water for two weeks prior to a hind-limb ischemia surgery. Laser Doppler imaging and flow cytometry were used to evaluate the degree of neovasculogenesis and the circulating levels of EPCs, respectively.

Results

In streptozotocin-induced diabetic mice, aliskiren enhanced the recovery of limb perfusion and capillary density, increased the number of circulating Sca-1+/Flk-1+ EPC-like cells, and elevated the levels of the plasma vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1α in a dose-dependent manner, whereas there were no such effects in hydralazine-treated mice. Intraperitoneal administration of anti-SDF-1 neutralizing monoclonal antibodies abolished the effects of aliskiren.

Conclusions

Independent of the reduction of blood pressure, aliskiren enhanced ischemia-induced neovasculogenesis in a dose-dependent manner via VEGF/SDF-1α related mechanisms in diabetic mice.  相似文献   

14.

Background

Papillomavirus disease and associated cancers remain a significant health burden in much of the world. The current protective vaccines, Gardasil and Cervarix, are expensive and not readily available to the underprivileged. In addition, the vaccines have not gained wide acceptance in the United States nor do they provide therapeutic value. Papillomaviruses are strictly species specific and thus human viruses cannot be studied in an animal host. An appropriate model for mucosal disease has long been sought. We chose to investigate whether the newly discovered mouse papillomavirus, MmuPV1, could infect mucosal tissues in Foxn1nu/Foxn1nu mice.

Methods

The vaginal and anal canals of Foxn1nu/Foxn1nu mice were gently abraded using Nonoxynol-9 and “Doctor’s BrushPicks” and MmuPV1 was delivered into the vaginal tract or the anal canal.

Results

Productive vaginal, cervical and anal infections developed in all mice. Vaginal/cervical infections could be monitored by vaginal lavage. Dysplasias were evident in all animals.

Conclusions

Anogenital tissues of a common laboratory mouse can be infected with a papillomavirus unique to that animal. This observation will pave the way for fundamental virological and immunological studies that have been challenging to carry out heretofore due to lack of a suitable model system.  相似文献   

15.

Background

In this study we used cellular magnetic resonance imaging (MRI) to detect mesenchymal stem cells (MSC) labeled with a Fluorine-19 (19F) agent. 19F-MRI offers unambiguous detection and in vivo quantification of labeled cells.

Methods

We investigated two common stem cell transplant mouse models: an immune competent, syngeneic transplant model and an immune compromised, xenograft transplant model. 19F labelled stem cells were implanted intramuscularly into the hindlimb of healthy mice. The transplant was then monitored for up to 17 days using 19F-MRI, after which the tissue was excised for fluorescence microscopy and immunohistochemisty.

Results

Immediately following transplantation, 19F-MRI quantification correlated very well with the expected cell number in both models. The 19F signal decreased over time in both models, with a more rapid decrease in the syngeneic model. By endpoint, only 2/7 syngeneic mice had any detectable 19F signal. In the xenograft model, all mice had detectable signal at endpoint. Fluorescence microscopy and immunohistochemistry were used to show that the 19F signal was related to the presence of bystander labeled macrophages, and not original MSC.

Conclusions

Our results show that 19F-MRI is an excellent tool for verifying the delivery of therapeutic cells early after transplantation. However, in certain circumstances the transfer of cellular label to other bystander cells may confuse interpretation of the long-term fate of the transplanted cells.  相似文献   

16.

Background

The role of regulatory CD4 T cells (Treg) in immune-mediated liver disease is still under debate. It remains disputed whether Treg suppress T cell-mediated hepatitis in vivo and whether hepatic regulatory T cells are functional in patients with autoimmune hepatitis.

Methods

We used TF-OVA mice, which express ovalbumin in hepatocytes, to investigate the impact of Treg in a model of autoimmune hepatitis. Treg isolated from inflamed livers of TF-OVA mice were tested for their functionality in vitro. By employing double transgenic TF-OVAxDEREG (DEpletion of REGulatory T cells) mice we analyzed whether Treg-depletion aggravates autoimmune inflammation in the liver in vivo.

Results

CD25+Foxp3+ CD4 T cells accumulated in the liver in the course of CD8 T cell-mediated hepatitis. Treg isolated from inflamed livers were functional to suppress CD8 T-cell proliferation in vitro. Depletion of Treg in TF-OVAxDEREG mice dramatically amplified T cell-mediated hepatitis. Repeated administration of antigen-specific CD8 T cells led to a second wave of inflammation only after depletion of Treg.

Conclusion

Our data add to the evidence for an important role of Treg in autoimmune hepatitis and show that Treg reduce the severity of T-cell mediated hepatitis in vivo. They constitute a key immune cell population that actively maintains a tolerogenic milieu in the liver and protects the liver against repeated inflammatory challenges.  相似文献   

17.

Background and aim

CD200:CD200 receptor (CD200R) interactions lead to potent immunosuppression and inhibition of autoimmune inflammation. We investigated the effect of "knockout"of CD200 or CD200R, or over-expression of CD200, on susceptibility to dextran sodium sulfate (DSS)—induced colitis, a mouse model of inflammatory bowel disease (IBD).

Methods

Acute or chronic colitis was induced by administration of dextran sodium sulfate (DSS) in four groups of age-matched C57BL/6 female mice: (1) CD200-transgenic mice (CD200tg); (2) wild-type (WT) mice; (3) CD200 receptor 1-deficient (CD200R1KO) mice; and (4) CD200-deficient (CD200KO) mice. The extent of colitis was determined using a histological scoring system. Colon tissues were collected for quantitative RT-PCR and Immunohistochemical staining. Supernatants from colonic explant cultures and mononuclear cells isolated from colonic tissue were used for ELISA.

Results

CD200KO and CD200R1KO mice showed greater sensitivity to acute colitis than WT mice, with accelerated loss of body weight, significantly higher histological scores, more severe infiltration of macrophages, neutrophils and CD3+ cells, and greater expression of macrophage-derived inflammatory cytokines, whose production was inhibited in vitro (in WT/CD200KO mouse cells) by CD200. In contrast, CD200tg mice showed less sensitivity to DSS compared with WT mice, with attenuation of all of the features seen in other groups. In a chronic colitis model, greater infiltration of Foxp3+ regulatory T (Treg) cells was seen in the colon of CD200tg mice compared to WT mice, and anti-CD25 mAb given to these mice attenuated protection.

Conclusions

The CD200:CD200R axis plays an immunoregulatory role in control of DSS induced colitis in mice.  相似文献   

18.

Background

The present study was motivated by the need to design a safe nano-carrier for the delivery of doxorubicin which could be tolerant to normal cells. PCL63-b-PNVP90 was loaded with doxorubicin (6 mg/ml), and with 49.8% drug loading efficiency; it offers a unique platform providing selective immune responses against lymphoma.

Methods

In this study, we have used micelles of amphiphilic PCL63-b-PNVP90 block copolymer as nano-carrier for controlled release of doxorubicin (DOX). DOX is physically entrapped and stabilized in the hydrophobic cores of the micelles and biological roles of these micelles were evaluated in lymphoma.

Results

DOX loaded PCL63-b-PNVP90 block copolymer micelles (DOX-PCL63-b-PNVP90) shows enhanced growth inhibition and cytotoxicity against human (K-562, JE6.1 and Raji) and mice lymphoma cells (Dalton''s lymphoma, DL). DOX-PCL63-b-PNVP90 demonstrates higher levels of tumoricidal effect against DOX-resistant tumor cells compared to free DOX. DOX-PCL63-b-PNVP90 demonstrated effective drug loading and a pH-responsive drug release character besides exhibiting sustained drug release performance in in-vitro and intracellular drug release experiments.

Conclusion

Unlike free DOX, DOX-PCL63-b-PNVP90 does not show cytotoxicity against normal cells. DOX-PCL63-b-PNVP90 prolonged the survival of tumor (DL) bearing mice by enhancing the apoptosis of the tumor cells in targeted organs like liver and spleen.  相似文献   

19.

Background

Xenotransplantation is a promising approach to circumventing the current organ shortage. However, T-cell-dependent anti-xenoresponses are a major challenge to successful xenografts. Given the advantages of the use of CTLA4-Ig in the survival of allografts, the purpose of the study was to investigate the therapeutic potential of CTLA4-IgG4 modified immature dendritic cells (imDCs) in the prevention of islets xenograft rejection.

Methods

CTLA4-IgG4 was constructed by the fusion of the extracellular regions of porcine CTLA4 to human the hIgG4 Fc region. The imDCs were induced and cultured from porcine peripheral blood mononuclear cells (PBMC). The CTLA4-IgG4 modified imDCs were delivered via the portal vein to the liver of diabetic mice (insulin-dependent diabetes mellitus) before islet xenografting, and mCTLA4-Ig was administered intravenously after xenotransplantation.

Results

The xenograft survival of mice receiving unmodified imDCs was approximately 30 days. However, following administration of CTLA4-IgG4 modified imDCs before grafting and mCTLA4-Ig after grafting, xenografts survived for more than 100 days. Flow cytometric analysis showed that the CD4+CD25+Foxp3+ Treg population was increased in spleens. The efficacy of donor CTLA4-IgG4 modified imDCs correlated partially with the amplification of Tregs.

Conclusions

These results confirm that selective inhibition of the direct and indirect pathways of T-cell activation by donor CTLA4-IgG4 modified imDCs and receptor CTLA4-Ig is a highly effective strategy to promote survival of xenografts.  相似文献   

20.

Objective

To investigate therapeutic effects of annexin A1 (anxA1) on atherogenesis in LDLR-/- mice.

Methods

Human recombinant annexin A1 (hr-anxA1) was produced by a prokaryotic expression system, purified and analysed on phosphatidylserine (PS) binding and formyl peptide receptor (FPR) activation. Biodistribution of 99mTechnetium-hr-anxA1 was determined in C57Bl/6J mice. 12 Weeks old LDLR-/- mice were fed a Western Type Diet (WTD) during 6 weeks (Group I) or 12 weeks (Group P). Mice received hr-anxA1 (1 mg/kg) or vehicle by intraperitoneal injection 3 times per week for a period of 6 weeks starting at start of WTD (Group I) or 6 weeks after start of WTD (Group P). Total aortic plaque burden and phenotype were analyzed using immunohistochemistry.

Results

Hr-anxA1 bound PS in Ca2+-dependent manner and activated FPR2/ALX. It inhibited rolling and adherence of neutrophils but not monocytes on activated endothelial cells. Half lives of circulating 99mTc-hr-anxA1 were <10 minutes and approximately 6 hours for intravenously (IV) and intraperitoneally (IP) administered hr-anxA1, respectively. Pharmacological treatment with hr-anxA1 had no significant effect on initiation of plaque formation (-33%; P = 0.21)(Group I) but significantly attenuated progression of existing plaques of aortic arch and subclavian artery (plaque size -50%, P = 0.005; necrotic core size -76% P = 0.015, hr-anxA1 vs vehicle) (Group P).

Conclusion

Hr-anxA1 may offer pharmacological means to treat chronic atherogenesis by reducing FPR-2 dependent neutrophil rolling and adhesion to activated endothelial cells and by reducing total plaque inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号