首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycolate oxidase was isolated from Medicago falcata Linn. after a screening from 13 kinds of C3 plant leaves, with higher specific activity than the enzyme from spinach. The M. falcata glycolate oxidase (MFGO) was partially purified and then immobilized onto hydrothermally synthesized magnetic nanoparticles via physical adsorption. The magnetic nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. The maximum load of MFGO was 56 mg/g support and the activity recovery was 45%. Immobilization of MFGO onto magnetic nanoparticles enhanced the enzyme stability, and the optimum temperature was significantly increased from 15 °C to 30 °C. The immobilized biocatalyst was successfully used in a batch reactor for repeated oxidization of glycolic acid to synthesize glyoxylic acid, retaining ca. 70% of its initial activity after 4 cycles of reaction at 30 °C for nearly 70 h, and its half-life was calculated to be 117 h.  相似文献   

2.
The Letter describes the preparation and characterization of a conjugate of isoniazid (INH) with magnetic nanoparticles Fe3O4@SiO2 115 ± 60 nm in size. The INH molecules were attached to the surface of nanoparticles by a covalent pH-sensitive amidine bond. The conjugate was characterized by X-ray diffraction, SEM, dynamic light scattering, IR spectroscopy and microanalysis. The conjugate released isoniazid under in vitro conditions (pH = 4; 37 °C; t1/2  115 s). In addition, the cytotoxicity of the Fe3O4@SiO2–INH conjugate was evaluated in SK-BR-3 cells using the xCELLigence system.  相似文献   

3.
α-Glucuronidase (EC 3.2.1.139) of family GH 115 from Scheffersomyces stipitis is a valuable enzyme for the modification of water-soluble xylan into insoluble biopolymers, due to its unique ability to act on polymeric xylans. The influence of growth rate on the production of α-glucuronidase by recombinant Saccharomyces cerevisiae MH1000pbk10D-glu in glucose-limited fed-batch culture was studied at 14 and 100 L scale. At and below the critical specific growth rate (μcrit) of 0.12 h−1 at 14 L scale, the biomass yield coefficient (Yx/s) remained constant at 0.4 g g−1 with no ethanol production, whereas ethanol yields relative to biomass (keth/x) of up to 0.54 g g−1 and a steady decrease in Yx/s were observed at μ > 0.12 h−1. Production of α-glucuronidase was growth associated at a product yield (kα-glu/x) of 0.45 mg g−1, with the highest biomass (37.35 g/L) and α-glucuronidase (14.03 mg/L) concentrations, were recorded during fed-batch culture at or near to μcrit. Scale-up with constant kLa from 14 to 100 L resulted in ethanol concentrations of up to 2.5 g/L at μ = 0.12 h−1. At this scale, α-glucuronidase yield could be maximised at growth rates below μcrit, to prevent localised high glucose concentration pockets at the feed entry zone that would induce oxido-reductive metabolism. This is the first report where recombinant production of α-glucuronidase (EC 3.2.1.139) by S. cerevisiae was optimised for application at pilot scale.  相似文献   

4.
《Inorganica chimica acta》2006,359(7):2159-2169
Single-crystal X-ray studies have defined the structures of a number of novel adducts of the form CuX:dpex (2:1), X = (pseudo-)halide, dpex = bis(diphenylpnicogeno)alkane, Ph2E(CH2)xEPh2, E = P, As, of diverse types, solvated with acetonitrile. CuBr:dpem (2:1)2. 2MeCN (E = both P, As) are tetranuclear, derivative of the familiar ‘step’ structure, while CuCl:dpph (MeCN solvate) and CuBr:dppe (MeCN solvate) yield one-dimensional polymers (i.e., x = 1, 2, 6 for dppx, x = m, e, h), as also does CuSCN:dpam (MeCN solvate). In CuI:dpsm:MeCN (3:1:2) (‘dpsm’ = Ph2Sb(CH2)SbPh2), CuI:dpsm (2:1)2 ‘step’ units are connected into an infinite ‘stair’ polymer by interspersed (MeCN)CuI linkers.  相似文献   

5.
BackgroundMagnetic nanoparticles (MNPs) are at the leading edge of the field of biomedical applications and magnetic biosensing.MethodsMNPs were fabricated by electrophysical methods of the laser target evaporation (LTE) and spark discharge with electrodynamic acceleration of plasma jumpers (SD). Synthesis of polyacrylamide hydrogel was done in the presence of Fe2O3 MNPs in different concentrations obtained by LTE. [FeNi/Ti]3/Cu/[Ti/FeNi]3/Ti multilayers for giant magnetoimpedance (GMI) based sensitive elements were prepared by rf-sputtering for testing a biosensor prototype.ResultsIron oxide MNPs, ferrofluids, ferrofluids contacting with biological systems, synthetic ferrogels mimicking natural tissues – are the steps of the discussed in this work development of bionanomaterials. Thorough the structural and magnetic studies of a multilayered sensitive element, MNPs and ferrogels insure the complete characterization of biosensor prototype. The GMI responses were carefully evaluated in initial state and in the presence of ferrogel with known concentration of MNPs. SD MNPs had the smallest 5–8 nm size. This nanomaterial was characterized by large internal strains of the order of 25 × 10 3, which can play an important role for the interaction with different biosystems.ConclusionsIron oxide MNPs were fabricated by LTE and SD methods. SD MNPs had the smallest 5–8 nm size and large internal strains of the order of 25 × 10 3. Designed GMI biosensor prototype allowed precise evaluation of the stray field of the MNPs present in the ferrogel by evaluating the systematic changes of the GMI in a 20–400 MHz frequency range.General significanceThis work summarizes recent developments in the field of nanomaterials potentially applicable in magnetic biosensing.  相似文献   

6.
Arthrospira (Spirulina) platensis (Nordstedt) Gomont was autotrophically cultivated for biomass production in repeated fed-batch process using urea as nitrogen source, with the aim of making large-scale production easier, increasing cell productivity and then reducing the production costs. It was investigated the influence of the ratio of renewed volume to total volume (R), the urea feeding time (tf) and the number of successive repeated fed-batch cycles on the maximum cell concentration (Xm), cell productivity (Px), nitrogen-to-cell conversion yield (Yx/n), maximum specific growth rate (μm) and protein content of dry biomass. The experimental results demonstrated that R = 0.80 and tf = 6 d were the best cultivation conditions, being able to simultaneously ensure, throughout the three fed-batch cycles, the highest average values of three of the five responses (Xm = 2101 ± 113 mg L?1, Px = 219 ± 13 mg L?1 d?1 and Yx/n = 10.3 ± 0.8 g g?1).  相似文献   

7.
BackgroundSilver nanoparticles (Ag-NPs) are widely used nowadays in a variety of commercial applications including medical, health care, textiles and household supplies.ObjectivesThe current study was designed to determine the median lethal dose (LC50) of Ag-NPs on Oreochromis niloticus and Tilapia zillii.MethodsAcute and sub-acute toxicity study of the Ag-NPs on brain tissues was carried out using different concentrations of the NPs at 2 mg L and 4 mg L. These concentrations were dispersed in deionized water with the exception of the control groups in the experiments. Biochemical and molecular analysis were conducted on tissue homogenates in order to evaluate the potential effects of NPs on the antioxidant system.ResultsThe Ag-NP acute toxicity (96 h LC50) values of 19.5 ± 2 and 20 ± 2.4 mg/L were reported for O. niloticus and T. zillii respectively. Fish exposed to 2 mg/L Ag-NPs did not show any significant change in the levels of reduced glutathione (GSH), total glutathione (tGSH) levels, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activity or genes expression and malondialdehyde (MDA) level. In contrary, a dose of 4 mg/L showed a significant reduction in the levels all the above-mentioned parameters except in MDA level where it was significantly induced.ConclusionResults indicate that exposure of O. niloticus and T. zillii to Ag-NPs (4 mg/L) has deleterious effects on brain antioxidant system, whereas a dose of 2 mg/L has no effects.  相似文献   

8.
The magnetic properties of Co–Ni alloys nanoparticles with composition Co80Ni20 and Co50Ni50 and dispersed in a silica matrix are investigated. The effective magnetic anisotropies are evaluated from the analysis of the temperature dependence of the zero-field-cooling magnetizations and from the hysteresis loops at 3 K considering the coherent rotation model. The results show that, on the contrary of what expected, Co80Ni20 nanoparticles have smaller anisotropy than the Co50Ni50 one showing that the magnetic properties of the system can be tuned from soft to hard by simply adjusting the alloy composition. This behaviour can be explained on the basis of the different size and composition of the two systems. Moreover we found that the evaluation of the anisotropy constant depends on the experimental method adopted due to the modifications by interparticle dipolar interactions of the reversal process.  相似文献   

9.
Enzymatic methanolysis of canola oil in the solvent-free system was studied in a packed-bed reactor (PBR) using small pieces of loofa plus Novozym 435. Response surface methodology (RSM) was applied to determine the effect of the transesterification conditions, namely flow rate of substrate (x1), temperature (x2) and methanol to canola oil molar ratio (x3) as the regressors, on the methyl ester production. A central composite design (CCD) was employed to optimize the reaction. A second-order polynomial multiple regression model was chosen and analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of 0.996, thus adjustment of the model with experimental data was ensured. The methyl ester yield increased as the flow rate of the reaction mixture in the PBR increased from its low to the middle level thereafter, increasing the flow rate corresponded to decreasing the yield. The same trends of changes were observed for the other two factors. The optimum process conditions for biodiesel production in the PBR were found to be: x1 = 6.3 mL/min, x2 = 38 °C and x3 = 4.3. The same batch was successfully used repeatedly in the PBR for six enzymatic cycles (432 h), where the methyl ester yield was maintained above 97%.  相似文献   

10.
PurposeAngiogenesis, a multistep process that results in new blood vessel formation from preexisting vasculature is essential for both the growth of solid tumour and for metastasis. Stimulation of vascular endothelial growth factor receptor (VEGFR), a transmembrane glycoprotein, results in mitogenesis. Within this family of receptors, VEGFR 2/kinase-insert-domain containing receptor appears to be principally upregulated during tumorigenesis. The aim of this study was to determine the expression of VEGFR-2/kinase-insert-domain containing receptor (KDR) and its correlation with angiotensin receptor type 1 (AT1-R) and clinical factors in endometrial carcinoma.MethodsThe expression of KDR and AT1-R was studied in endometrial carcinoma and normal endometrium by Real-time RT-PCR and Western blot analysis in 136 samples. The expression profile was correlated with the clinicopathological characteristics of endometrial adenocarcinoma.ResultsWe noted a significant correlation between the expression of KDR and AT1-R in tumour grade G1, G2 and G3 (Rs = 0.50; p = 0.002, Rs = 0.69; p = 0.0001, Rs = 0.52; p = 0.005, respectively). In stage I and stage II carcinoma, a significant correlation was also found between the expression of KDR and AT1-R (Rs = 0.70, p = 0.0001, Rs = 0.67; p = 0.001, respectively). Moreover significant correlation was observed between both KDR and AT1-R in tissue with different myometrial invasion (Rs = 0.54, p = 0.0001, Rs = 0.68; p = 0.0001; respectively for tumours with invasion into the inner half and invasion into the outer half).ConclusionsBasing on received correlation between AT1-R and KDR expression and previous results we speculate that angiotensin through AT1-R modulates KDR expression and thus have influence on local VEGF level. However, further studies are required to clarify the biological interaction between KDR, AT1-R and other hormonal regulators in endometrial carcinoma.  相似文献   

11.
IntroductionThe aim of this study was to determine the within- and between-day reliability of lower limb biomechanical variables collected during single leg squat (SLS) and single leg landing (SLL) tasks.Methods15 recreational athletes took part in three testing sessions, two sessions on the same day and another session one week later. Kinematic and kinetic data was gathered using a ten-camera movement analysis system (Qualisys) and a force platform (AMTI) embedded into the floor.ResultsThe combined averages of within-day ICC values (ICCSLS = 0.87; ICCSLL = 0.90) were higher than between-days (ICCSLS = 0.81; ICCSLL = 0.78). Vertical GRF values (ICCSLS = 0.90; ICCSLL = 0.98) were more reliable than joint angles (ICCSLS = 0.85; ICCSLL = 0.82) and moments (ICCSLS = 0.83; ICCSLL = 0.87).DiscussionThis study demonstrates that all joint angles, moments, and vertical ground reaction force (GRF) variables obtained during both tasks showed good to excellent consistency with relatively low standard error of measurement values. These findings would be of relevance to practitioners who are using such measures for screening and prospective studies of rehabilitative techniques.  相似文献   

12.
Reduced nitric oxide (NO) production and bioactivity is a major contributor to endothelial dysfunction. Animal data suggest that improvements in endothelial function in response to aerobic exercise training may depend on the duration of the training program. However, no studies have examined changes in NO (as assessed by the major NO metabolites, nitrate and nitrite, NOx) after long-term training in humans. In addition, aging may impair the ability of the vasculature to increase NO with exercise. Thus, we determined whether 24 weeks of aerobic exercise training increases plasma NOx levels in sedentary older adults. We also examined changes in forearm blood flow (FBF) at rest and during reactive hyperemia as a measure of vasomotor function. Plasma NOx levels were measured in 82 men and women using a modified Griess assay. FBF was assessed in a subset of individuals (n = 15) using venous occlusion plethysmography. After 24 weeks of exercise training, there were significant improvements in maximum oxygen consumption, HDL cholesterol, triglycerides, and body fat. Changes in plasma NOx levels ranged from ?14.83 to +16.69 μmol/L; however, the mean change overall was not significant (?0.33 ± 6.30 μmol/L, p = 0.64). Changes in plasma NOx levels were not associated with age, gender, race, HDL cholesterol, triglycerides, body weight, body fat, or maximal oxygen consumption. There were also no significant changes in basal FBF, peak FBF, hyperemic response, total hyperemic flow, or minimum forearm vascular resistance with exercise training. In conclusion, improvements in plasma NOx levels and FBF are not evident after long-term training in older adults.  相似文献   

13.
《Médecine Nucléaire》2017,41(2):73-82
PurposeThe overexpression of p16 and HPV status are now well established as independent prognostic factors in head and neck squamous cell carcinoma (HNSCC). It was suggested that some parameters derived from initial 18F-FDG PET are also independent prognostic factors. Our purpose was to study the correlation between virology and pretreatment PET/CT in locally advanced HNSCC treated by radio-chemotherapy.MethodsForty HNSCC patients with tumor volumes > 3 cm3 were prospectively recruited. All patients underwent initial 18F-FDG PET/CT, from which metabolic volume, intensity (SUV), overall activity, heterogeneity and shape parameters were extracted. The correlation of these parameters with virological data extracted from pre treatment biopsy, including p16 expression, DNA HPV 16 and HPV status (p16 + DNA HPV 16) was subsequently studied.ResultsP16 + tumors exhibited higher SUVmax (P = 0.028) and SUVmean (P = 0.02). P16+ tumors were also more heterogeneous, albeit with a lower correlation (P = 0.004 for local heterogeneity). In addition, P16+ and HPV+ tumors were characterized by less complex shapes (P = 0.03).ConclusionLocally advanced HNSCC show specific PET characteristics in case of P16+ tumors. The relationship between those different biological characterization approaches and overall patient outcome needs to be investigated.  相似文献   

14.
AimTo evaluate dose differences in lung metastases treated with stereotactic body radiotherapy (SBRT), and the correlation with local control, regarding the dose algorithm, target volume and tissue density.BackgroundSeveral studies showed excellent local control rates in SBRT for lung metastases, with different fractionation schemes depending on the tumour location or size. These results depend on the dose distributions received by the lesions in terms of the tissue heterogeneity corrections performed by the dose algorithms.Materials and methodsForty-seven lung metastases treated with SBRT, using intrafraction control and respiratory gating with internal fiducial markers as surrogates (ExacTrac, BrainLAB AG), were calculated using Pencil Beam (PB) and Monte Carlo (MC) (iPlan, BrainLAB AG).Dose differences between both algorithms were obtained for the dose received by 99% (D99%) and 50% (D50%) of the planning treatment volume (PTV). The biologically effective dose delivered to 99% (BED99%) and 50% (BED50%) of the PTV were estimated from the MC results. Local control was evaluated after 24 months of median follow-up (range: 3–52 months).ResultsThe greatest variations (40.0% in ΔD99% and 38.4% in ΔD50%) were found for the lower volume and density cases. The BED99% and BED50% were strongly correlated with observed local control rates: 100% and 61.5% for BED99% > 85 Gy and <85 Gy (p < 0.0001), respectively, and 100% and 58.3% for BED50% > 100 Gy and <100 Gy (p < 0.0001), respectively.ConclusionsLung metastases treated with SBRT, with delivered BED99% > 85 Gy and BED50% > 100 Gy, present better local control rates than those treated with lower BED values (p = 0.001).  相似文献   

15.
The thermal and light-induced spin transition in [FexMn1?x(bpp)2](NCSe)2 (bpp = 2,6-bis(pyrazol-3-yl)pyridine) has been investigated by magnetic susceptibility, photomagnetism and diffuse reflectivity measurements. These complexes display a thermal spin transition and exhibit the light-induced excited spin state trapping (LIESST) effect at low temperature. For each mixed-crystal system, the thermal spin transition temperature, T1/2, and the relaxation temperature of the photo-induced high-spin state, T(LIESST), have been systematically determined. It appears that T1/2 decreases with the metal dilution while T(LIESST) remains unchanged, suggesting that the two interconversion processes are controlled by different factors; i.e. the photomagnetic properties are governed at the molecular scale and the thermal spin crossover regime is affected by both the ligand field and crystal packing effects. For highly metal-diluted complex with x < 0.2, it is found that when T1/2 reaches the T(LIESST), the complex remains HS on the whole range of temperature.  相似文献   

16.
d-Amino acid oxidase from Rhodosporidium toruloides (RtDAO) and Fe3O4 magnetic nanoparticles were encapsulated simultaneously within biomimetic silica, as mediated by polyallylamine. The capacity for this enzyme reached 193 mg/g of biomimetic silica when 15 mg/ml RtDAO was used during encapsulation; the average encapsulation efficiency was approximately 74%. The Tm value (the temperature at which 50% of the initial activity was retained after 1 h of incubation) was increased from 44.3 °C of the free RtDAO to 57.7 °C, clearly indicating the thermal stability was improved by encapsulation. In the presence of 50 mM hydrogen peroxide, encapsulated RtDAO had a half-life of 148 min, an approximately 2-fold increase in resistance to hydrogen peroxide as compared to 78-min half-life of the free form. The encapsulation process is simple and can be completed within minutes; besides, the resultant enzymes can be recovered easily under magnetic field. Such preparation of encapsulated d-amino acid oxidase could be exploited for many potential applications.  相似文献   

17.
PurposeTo investigate the accuracy of predicted time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using simulated dynamic PET data and a physiologically based pharmacokinetic (PBPK) model.MethodsPBPK parameters were estimated using biokinetic data of 15 patients after injection of (152 ± 15) MBq of 111In-DTPAOC (total peptide amount (5.78 ± 0.25) nmol). True mathematical phantoms of patients (MPPs) were the PBPK model with the estimated parameters. Dynamic PET measurements were simulated as being done after bolus injection of 150 MBq 68Ga-DOTATATE using the true MPPs. Dynamic PET scans around 35 min p.i. (P1), 4 h p.i. (P2) and the combination of P1 and P2 (P3) were simulated. Each measurement was simulated with four frames of 5 min each and 2 bed positions. PBPK parameters were fitted to the PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 5.1 GBq of 90Y-DOTATATE over 30 min in both true and PET-predicted MPPs. TIACs of simulated therapy were calculated, true MPPs (true TIACs) and predicted MPPs (predicted TIACs) followed by the calculation of variabilities v.ResultsFor P1 and P2 the population variabilities of kidneys, liver and spleen were acceptable (v < 10%). For the tumours and the remainders, the values were large (up to 25%). For P3, population variabilities for all organs including the remainder further improved, except that of the tumour (v > 10%).ConclusionTreatment planning of PRRT based on dynamic PET data seems possible for the kidneys, liver and spleen using a PBPK model and patient specific information.  相似文献   

18.
A high throughput screening (HTS) hit, 1 (Plk1 Ki = 2.2 μM) was optimized and evaluated for the enzymatic inhibition of Plk-1 kinase. Molecular modeling suggested the importance of adding a hydrophobic aromatic amine side chain in order to improve the potency by a classic kinase H-donor–acceptor binding mode. Extensive SAR studies led to the discovery of 49 (Plk1 Ki = 5 nM; EC50 = 1.05 μM), which demonstrated moderate efficacy at 100 mpk in a MiaPaCa tumor model, with no overt toxicity.  相似文献   

19.
In this study, we synthesized magnetic nanoparticles (MNPs) by co-precipitation method. After that, silica coating with tetraethyl orthosilicate (TEOS) (SMNPs), amine functionalization of silica coated MNPs (ASMNPs) by using 3-aminopropyltriethoxysilane (APTES) were performed, respectively. After activation with glutaraldehyde (GA) of ASMNPs, human carbonic anhydrase (hCA I) was immobilized on ASMNPs. The characterization of nanoparticles was performed by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The immobilization conditions such as GA concentration, activation time of support with GA, enzyme amount, enzyme immobilization time were optimized. In addition of that, optimum conditions for activity, kinetic parameters (Km, Vmax, kcat, kcat/Km), thermal stability, storage stability and reusability of immobilized enzyme were determined.The immobilized enzyme activity was optimum at pH 8.0 and 25 °C. The Km value of the immobilized enzyme (1.02 mM) was higher than the free hCA I (0.48 mM). After 40 days incubation at 4 °C and 25 °C, the immobilized hCA I sustained 89% and 85% of its activity, respectively. Also, it sustained 61% of its initial activity after 13 cycles. Such results revealed good potential of immobilized enzyme for various applications.  相似文献   

20.
IntroductionWe aimed to determine whether the changes in muscle activity (in terms of both gross electromyography (EMG) and motor unit (MU) discharge characteristics) observed during pain are spatially organized with respect to pain location within a muscle which is the main contributor of the task.MethodsSurface and fine-wire EMG was recorded during matched low-force isometric plantarflexion from soleus (from four quadrants with fine-wire EMG and from the medial/lateral sides with surface EMG), both gastrocnemii heads, peroneus longus, and tibialis anterior. Four conditions were tested: two control conditions that each preceded contractions with pain induced in either the lateral (PainL) or medial (PainM) side of soleus.ResultsNeither the presence (p = 0.28) nor location (p = 0.19) of pain significantly altered gross muscle activity of any location (lateral/medial side of soleus, gastrocnemii, peroneus longus and tibialis anterior). Group data from 196 MUs show redistribution of MU activity throughout the four quadrants of soleus, irrespective of pain location. The significant decrease of MU discharge rate during pain (p < 0.0001; PainL: 7.3 ± 0.9–6.9 ± 1.1 Hz, PainM: 7.0 ± 1.1 to 6.6 ± 1.1 Hz) was similar for all quadrants of the soleus (p = 0.43), regardless of the pain location (p = 0.98). There was large inter-participant variation in respect to the characteristics of the altered MU discharge with pain.ConclusionResults from both surface and fine-wire EMG recordings do not support the hypothesis that muscle activity is reorganized in a simple systematic manner with respect to pain location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号