首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inferring on others'' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to “player” or “adviser” roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser''s incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players'' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers'' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser''s intentions were presently stable. Finally, our model of the players'' inference predicted the players'' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers'' helpfulness and the advisers'' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition.  相似文献   

2.
3.
4.
The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite''s basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.  相似文献   

5.
Soon after longlining on Patagonian toothfish (Dissostichus eleginoides) started in the Southern Ocean in the second half of the 1980s, interactions of cetaceans with these fisheries became apparent. The two species primarily involved were orcas (killer whales) (Orcinus orca) and male sperm whales (Physeter macrocephalus). Both species took substantial number of fish from the line primarily during day light hours. Catch rates of longliners declined to less than 50% when orcas occurred close to longline vessels while the loss to sperm whales was much less obvious. They were seen diving close to the line down to 400 m where they apparently took fish. Their impact on catch rates was much less notable. Sperm whales became frequently entangled in the line and part of the line was lost in a number of cases. Other cetaceans were rarely seen in the vicinity of longline vessels. They became entangled in the line only occasionally and one whale (presumably a minke whale) died.  相似文献   

6.
Cetaceans in the Southern Ocean are potentially impacted by anthropogenic activities, such as direct hunting or through indirect effects of a reduced sea ice due to climate change. Knowledge on the distribution of cetacean species in this area is important for conservation, but the remoteness of the study area and the presence of sea ice make it difficult to conduct shipboard surveys to obtain this information. In this study, aerial surveys were conducted from ship-based helicopters. In the 2006/07 (ANT XXIII/8) and 2008/09 (ANT XXV/2) polar summers, the icebreaker RV ‘Polarstern’ conducted research cruises in the Weddell Sea, which offered the opportunity to use the helicopters to conduct dedicated cetacean surveys. Combining the results from both cruises, over 26,000 km were covered on survey effort, 13 different cetacean species were identified, and a total of 221 cetacean sightings consisting of a total of 650 animals were made. Using digital photography, it was possible to identify four different beaked whale species and to conduct individual photo-identification of humpback and southern right whales. Helicopter surveys allow the collection of additional information on sightings, (e.g. group size, species), as well as the coverage of areas with high ice coverage. The flexibility and manoeuvrability of helicopters make them a powerful scientific tool to investigate cetaceans in the Southern Ocean, especially in combination with an icebreaker.  相似文献   

7.
Researchers have recently paid attention to social contact patterns among individuals due to their useful applications in such areas as epidemic evaluation and control, public health decisions, chronic disease research and social network research. Although some studies have estimated social contact patterns from social networks and surveys, few have considered how to infer the hierarchical structure of social contacts directly from census data. In this paper, we focus on inferring an individual’s social contact patterns from detailed census data, and generate various types of social contact patterns such as hierarchical-district-structure-based, cross-district and age-district-based patterns. We evaluate newly generated contact patterns derived from detailed 2011 Hong Kong census data by incorporating them into a model and simulation of the 2009 Hong Kong H1N1 epidemic. We then compare the newly generated social contact patterns with the mixing patterns that are often used in the literature, and draw the following conclusions. First, the generation of social contact patterns based on a hierarchical district structure allows for simulations at different district levels. Second, the newly generated social contact patterns reflect individuals social contacts. Third, the newly generated social contact patterns improve the accuracy of the SEIR-based epidemic model.  相似文献   

8.
Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey), PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles.  相似文献   

9.
Species at risk with secretive breeding behaviours, low densities, and wide geographic range pose a significant challenge to conservation actions because population trends are difficult to detect. Such is the case with the Marbled Murrelet (Brachyramphus marmoratus), a seabird listed as ‘Threatened’ by the Species at Risk Act in Canada largely due to the loss of its old growth forest nesting habitat. We report the first estimates of population trend of Marbled Murrelets in Canada derived from a monitoring program that uses marine radar to detect birds as they enter forest watersheds during 923 dawn surveys at 58 radar monitoring stations within the six Marbled Murrelet Conservation Regions on coastal British Columbia, Canada, 1996–2013. Temporal trends in radar counts were analyzed with a hierarchical Bayesian multivariate modeling approach that controlled for variation in tilt of the radar unit and day of year, included year-specific deviations from the overall trend (‘year effects’), and allowed for trends to be estimated at three spatial scales. A negative overall trend of -1.6%/yr (95% credibility interval: -3.2%, 0.01%) indicated moderate evidence for a coast-wide decline, although trends varied strongly among the six conservation regions. Negative annual trends were detected in East Vancouver Island (-9%/yr) and South Mainland Coast (-3%/yr) Conservation Regions. Over a quarter of the year effects were significantly different from zero, and the estimated standard deviation in common-shared year effects between sites within each region was about 50% per year. This large common-shared interannual variation in counts may have been caused by regional movements of birds related to changes in marine conditions that affect the availability of prey.  相似文献   

10.
ABSTRACT Alaska (USA) contains a large proportion of the breeding population of trumpeter swans (Cygnus buccinator) in the United States. However, tracking population trends in Alaska trumpeter swans is complicated by variables such as an increase in survey effort over time, periodic surveys (1968 and every 5 yr after 1975), and missing data. We therefore constructed Bayesian hierarchical negative binomial models to account for nuisance variables and to estimate population size of trumpeter swans using aerial survey data from all known breeding habitats in Alaska, 1968–2005. We also performed an augmented analysis, where we entered zeroes for missing data. This approach differed from the standard (nonaugmented) analysis where we generated estimates for missing data through simulation. We estimated that adult swan populations in Alaska increased at an average rate of 5.9% annually (95% credibility interval = 5.2–6.6%) and cygnet production increased at 5.3% annually (95% credibility interval = 2.2–8.0%). We also found evidence that cygnet production exhibited higher rates of increase at higher latitudes in later years, which may be a response to warmer spring temperatures. Augmented analyses always produced higher swan population estimates than the nonaugmented estimates and likely overestimate true population abundance. Our results provide evidence that trumpeter swan populations are increasing in Alaska, especially at northern latitudes. Changes in population size and distribution could negatively affect tundra swans (Cygnus columbianus) breeding in Alaska, and biologists should monitor these interactions. We recommend using nonaugmented Bayesian hierarchical analyses to estimate wildlife populations when missing survey data occur.  相似文献   

11.

Background

Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation.

Methodology/Principal findings

The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength.

Conclusion/Significance

The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates.  相似文献   

12.
Metagenomics provides a powerful new tool set for investigating evolutionary interactions with the environment. However, an absence of model-based statistical methods means that researchers are often not able to make full use of this complex information. We present a Bayesian method for inferring the phylogenetic relationship among related organisms found within metagenomic samples. Our approach exploits variation in the frequency of taxa among samples to simultaneously infer each lineage haplotype, the phylogenetic tree connecting them, and their frequency within each sample. Applications of the algorithm to simulated data show that our method can recover a substantial fraction of the phylogenetic structure even in the presence of high rates of migration among sample sites. We provide examples of the method applied to data from green sulfur bacteria recovered from an Antarctic lake, plastids from mixed Plasmodium falciparum infections, and virulent Neisseria meningitidis samples.  相似文献   

13.
Cetacean remains from two different stratigraphic units exposed in Falcon State, northwestern Venezuela, are described. The first record is derived from the Lower Miocene Cantaure Formation and the second from the Lower Pliocene Punta Gavilán Formation, The two specimens are identified as an indeterminate species of a platanistoid Squalodelphinidae, and an indeterminate cetothere or balaenopterid, respectively.   相似文献   

14.
Summary One of the key ingredients in drug discovery is the derivation of conceptual templates called pharmacophores. A pharmacophore model characterizes the physicochemical properties common to all active molecules, called ligands, bound to a particular protein receptor, together with their relative spatial arrangement. Motivated by this important application, we develop a Bayesian hierarchical model for the derivation of pharmacophore templates from multiple configurations of point sets, partially labeled by the atom type of each point. The model is implemented through a multistage template hunting algorithm that produces a series of templates that capture the geometrical relationship of atoms matched across multiple configurations. Chemical information is incorporated by distinguishing between atoms of different elements, whereby different elements are less likely to be matched than atoms of the same element. We illustrate our method through examples of deriving templates from sets of ligands that all bind structurally related protein active sites and show that the model is able to retrieve the key pharmacophore features in two test cases.  相似文献   

15.
16.
This paper is concerned with the estimation of the number of species in a population through a fully hierarchical Bayesian model using the Metropolis algorithm. The proposed Bayesian estimator is based on Poisson random variables with means that are distributed according to some prior distributions with unknown hyperparameters. An empirical Bayes approach is considered and compared with the fully Bayesian approach based on biological data.  相似文献   

17.
18.
19.
Oleson JJ  He CZ 《Biometrics》2004,60(1):50-59
Sampling units that do not answer a survey may dramatically affect the estimation results of interest. The response may even be conditional on the outcome of interest in the survey. If estimates are found using only those who responded, the estimate may be biased, known as nonresponse bias. We are interested in finding estimates of success rates from a survey. We begin by looking at two current Bayesian approaches to treating nonresponse in a hierarchical model. However, these approaches do not consider possible spatial correlations between domains for either success rate or response rate. We build a Bayesian hierarchical spatial model to explicitly estimate the success rate, response rate given success, and response rate given failure. The success rates in the domains of the survey are allowed to be spatially correlated. We also allow spatial dependence between domains in both response rate given success and response rate given failure. Spatial dependence is induced by a common latent spatial structure between the two conditional response rates. We use the 1998 Missouri Turkey Hunting Survey to illustrate this methodology. We find significant spatial correlation in the success rates and incorporating nonrespondents has an impact on the success rate estimates.  相似文献   

20.
We propose a semiparametric Bayesian model, based on penalized splines, for the recovery of the time-invariant topology of a causal interaction network from longitudinal data. Our motivation is inference of gene regulatory networks from low-resolution microarray time series, where existence of nonlinear interactions is well known. Parenthood relations are mapped by augmenting the model with kinship indicators and providing these with either an overall or gene-wise hierarchical structure. Appropriate specification of the prior is crucial to control the flexibility of the splines, especially under circumstances of scarce data; thus, we provide an informative, proper prior. Substantive improvement in network inference over a linear model is demonstrated using synthetic data drawn from ordinary differential equation models and gene expression from an experimental data set of the Arabidopsis thaliana circadian rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号