首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

X-chromosome inactivation (XCI) results in the silencing of most genes on one X chromosome, yielding mono-allelic expression in individual cells. However, random XCI results in expression of both alleles in most females. Allelic imbalances have been used genome-wide to detect mono-allelically expressed genes. Analysis of X-linked allelic imbalance in females with skewed XCI offers the opportunity to identify genes that escape XCI with bi-allelic expression in contrast to those with mono-allelic expression and which are therefore subject to XCI.

Results

We determine XCI status for 409 genes, all of which have at least five informative females in our dataset. The majority of genes are subject to XCI and genes that escape from XCI show a continuum of expression from the inactive X. Inactive X expression corresponds to differences in the level of histone modification detected by allelic imbalance after chromatin immunoprecipitation. Differences in XCI between populations and between cell lines derived from different tissues are observed.

Conclusions

We demonstrate that allelic imbalance can be used to determine an inactivation status for X-linked genes, even without completely non-random XCI. There is a range of expression from the inactive X. Genes escaping XCI, including those that do so in only a subset of females, cluster together, demonstrating that XCI and location on the X chromosome are related. In addition to revealing mechanisms involved in cis-gene regulation, determining which genes escape XCI can expand our understanding of the contributions of X-linked genes to sexual dimorphism.  相似文献   

2.
3.
4.
5.
X chromosome inactivation (XCI) is an epigenetic process that almost completely inactivates one of two X chromosomes in somatic cells of mammalian females. A few genes are known to escape XCI and the mechanism for this escape remains unclear. Here, using mouse trophoblast stem (TS) cells, we address whether particular chromosomal interactions facilitate escape from imprinted XCI. We demonstrate that promoters of genes escaping XCI do not congregate to any particular region of the genome in TS cells. Further, the escape status of a gene was uncorrelated with the types of genomic features and gene activity located in contacted regions. Our results suggest that genes escaping imprinted XCI do so by using the same regulatory sequences as their expressed alleles on the active X chromosome. We suggest a model where regulatory control of escape from imprinted XCI is mediated by genomic elements located in close linear proximity to escaping genes.  相似文献   

6.
7.
8.
9.
10.
X-chromosome inactivation in monkey embryos and pluripotent stem cells   总被引:1,自引:0,他引:1  
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.  相似文献   

11.
Generation of induced pluripotent stem cells (iPSCs) with naive pluripotency is important for their applications in regenerative medicine. In female iPSCs, acquisition of naive pluripotency is coupled to X chromosome reactivation (XCR) during somatic cell reprogramming, and live cell monitoring of XCR is potentially useful for analyzing how iPSCs acquire naive pluripotency. Here we generated female mouse embryonic stem cells (ESCs) that carry the enhanced green fluorescent protein (EGFP) and humanized Kusabira-Orange (hKO) genes inserted into an intergenic site near either the Syap1 or Taf1 gene on both X chromosomes. The ESC clones, which initially expressed both EGFP and hKO, inactivated one of the fluorescent protein genes upon differentiation, indicating that the EGFP and hKO genes are subject to X chromosome inactivation (XCI). When the derived somatic cells carrying the EGFP gene on the inactive X chromosome (Xi) were reprogrammed into iPSCs, the EGFP gene on the Xi was reactivated when pluripotency marker genes were induced. Thus, the fluorescent protein genes inserted into an intergenic locus on both X chromosomes enable live cell monitoring of XCI during ESC differentiation and XCR during reprogramming. This is the first study that succeeded live cell imaging of XCR during reprogramming.  相似文献   

12.
13.
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.  相似文献   

14.
Macrohistones (mH2As) are unusual histone variants found exclusively in vertebrate chromatin. In mice, the H2afy gene encodes two splice variants, mH2A1.1 and mH2A1.2 and a second gene, H2afy2, encodes an additional mH2A2 protein. Both mH2A isoforms have been found enriched on the inactive X chromosome (Xi) in differentiated mammalian female cells, and are incorporated into the chromatin of developmentally-regulated genes. To investigate the functional significance of mH2A isoforms for X chromosome inactivation (XCI), we produced male and female embryonic stem cell (ESC) lines with stably-integrated shRNA constructs that simultaneously target both mH2A1 and mH2A2. Surprisingly, we find that female ESCs deficient for both mH2A1 and mH2A2 readily execute and maintain XCI upon differentiation. Furthermore, male and female mH2A-deficient ESCs proliferate normally under pluripotency culture conditions, and respond to several standard differentiation procedures efficiently. Our results show that XCI can readily proceed with substantially reduced total mH2A content.  相似文献   

15.
In the mouse, there are two forms of X chromosome inactivation (XCI), random XCI in the fetus and imprinted paternal XCI, which is limited to the extraembryonic tissues. While the mechanism of random XCI has been studied extensively using the in vitro XX ES cell differentiation system, imprinted XCI during early embryonic development has been less well characterized. Recent studies of early embryos have reported unexpected findings for the paternal X chromosome (Xp). Imprinted XCI may not be linked to meiotic silencing in the male germ line but rather to the imprinted status of the Xist gene. Furthermore, the Xp becomes inactivated in all cells of cleavage-stage embryos and then reactivated in the cells of the inner cell mass (ICM) that form the epiblast, where random XCI ensues.  相似文献   

16.
17.
X chromosome inactivation (XCI) ensures an equal gene dosage between the sexes in placental mammals. Xist, a modular multi-domain X-encoded long non-coding RNA coats the X chromosome in cis during XCI. Xist recruits chromatin remodelers and repressor complexes ensuring silencing of the inactive X (Xi). Here, we review the recent work focused on the role of Xist functional repeats and interacting RNA-binding factors in the establishment of the silent state. Xist orchestrates recruitment of remodelers and repressors that first facilitate removal of the active chromatin landscape and subsequently direct the transition into a repressive heterochromatic environment. Some of these factors affect silencing on a chromosome-wide scale, while others display gene-specific silencing defects. The temporal order of recruitment shows each silencing step is party dependent on one another. After the Xi is established, many of the factors are dispensable, and a different repertoire of proteins ensure the silenced Xi is maintained and propagated.  相似文献   

18.
19.
20.
Nuclear transfer ES (ntES) cells are established from cloned blastocysts generated by somatic cell nuclear transfer and are expected to be an important resource for regenerative medicine. However, cloned mammals, generated by similar methods, show various abnormalities, which suggest disordered gene regulation. Random X chromosome inactivation (XCI) has been observed to take place in cloned female mouse embryos, but XCI does not necessarily occur according to Xce strength, a genetic element that determines the likelihood of each X chromosome to be inactivated. This observation suggests incomplete reprogramming of epigenetic marks related to XCI. Here, we investigated XCI in ntES cell lines, which were established using differentiated embryoid bodies that originated from a female mouse ES cell line. We examined Xist RNA localization, histone modifications in the Xist locus, and XCI choice. We did not find substantial differences between the ntES lines and their parental ES line. This suggests that the Xist locus and the epigenetic marks involved in XCI are reprogrammed by nuclear transfer and subsequent ntES cell establishment. In contrast to skewed XCI in cloned mice, our observations indicate that normal XCI choice takes place in ntES cells, which supports the goal of safe therapeutic cloning for clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号