首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

While freshwater sustainability is generally defined as the provisioning of water for both people and the environment, in practice it is largely focused only on supplying water to furnish human population growth. Symptomatic of this is the state of Arizona, where rapid growth outside of the metropolitan Phoenix-Tucson corridor relies on the same groundwater that supplies year-round flow in rivers. Using Arizona as a case study, we present the first study in the southwestern United States that evaluates the potential impact of future population growth and water demand on streamflow depletion across multiple watersheds.

Methodology/Principal Findings

We modeled population growth and water demand through 2050 and used four scenarios to explore the potential effects of alternative growth and water management strategies on river flows. Under the base population projection, we found that rivers in seven of the 18 study watersheds could be dewatered due to municipal demand. Implementing alternative growth and water management strategies, however, could prevent four of these rivers from being dewatered.

Conclusions/Significance

The window of opportunity to implement water management strategies is narrowing. Because impacts from groundwater extraction are cumulative and cannot be immediately reversed, proactive water management strategies should be implemented where groundwater will be used to support new municipal demand. Our approach provides a low-cost method to identify where alternative water and growth management strategies may have the most impact, and demonstrates that such strategies can maintain a continued water supply for both people and the environment.  相似文献   

2.
Large‐scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region's predominant form of land use change. Such landscape‐level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5–13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (<13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape‐scale conversion to soy substantially alters water‐balance, potentially altering the regional hydrology over large areas of the southern Amazon.  相似文献   

3.
Harbor porpoises, Phocoena phocoena, off California, comprise four recognized population stocks: Morro Bay (MOR), Monterey Bay (MRY), San Francisco-Russian River (SFRR), and Northern California-Southern Oregon (NCSO). The three southernmost stocks experienced substantial bycatch in gill net fisheries during the 1970s and 1980s. While the SFRR stock received full protection from gill nets in 1989, the MOR and MRY stocks continued to experience at least some bycatch through 2001–2002. We examined long-term population trends for these four harbor porpoise stocks, based on two sets of systematic, aerial line-transect surveys conducted off California during summer/fall of 1986–2017. We applied a Bayesian hierarchical framework to specify a process model of population density and an observation model of porpoise counts during line-transect surveys. Growth rates were estimated for periods with and without bycatch. Posterior distributions indicate the MOR, MRY, and SFRR stocks, respectively, grew at 9.6%, 5.8%, and 6.1% per year after gill nets were largely or fully eliminated for each stock. Abundance off northern California appears stable or slightly increasing. This study provides a first empirical estimate of maximum net reproductive rate for harbor porpoise (at least 9.6%), and demonstrates that porpoise populations can recover from substantial gill net impacts if bycatch is eliminated.  相似文献   

4.
* Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate. * Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season streamflow in three forested watersheds in east Tennessee, USA, were analyzed to determine relative influences of ozone and other climatic variables on canopy physiology and streamflow patterns. * Statistically significant increases in whole-tree canopy conductance, depletion of soil moisture in the rooting zone, and reduced late-season streamflow in forested watersheds were detected in response to increasing ambient ozone levels. * Short-term changes in canopy water use and empirically modeled streamflow patterns over a 23-yr observation period suggest that current ambient ozone exposures may exacerbate the frequency and level of negative effects of drought on forest growth and stream health.  相似文献   

5.
Prolonged drought due to climate change has negatively impacted amphibians in southern California, U.S.A. Due to the severity and length of the current drought, agencies and researchers had growing concern for the persistence of the arroyo toad (Anaxyrus californicus), an endangered endemic amphibian in this region. Range‐wide surveys for this species had not been conducted for at least 20 years. In 2017–2020, we conducted collaborative surveys for arroyo toads at historical locations. We surveyed 88 of the 115 total sites having historical records and confirmed that the arroyo toad is currently extant in at least 61 of 88 sites and 20 of 25 historically occupied watersheds. We did not detect toads at almost a third of the surveyed sites but did detect toads at 18 of 19 specific sites delineated in the 1999 Recovery Plan to meet one of four downlisting criteria. Arroyo toads are estimated to live 7–8 years, making populations susceptible to prolonged drought. Drought is estimated to increase in frequency and duration with climate change. Mitigation strategies for drought impacts, invasive aquatic species, altered flow regimes, and other anthropogenic effects could be the most beneficial strategies for toad conservation and may also provide simultaneous benefits to several other native species that share the same habitat.  相似文献   

6.
Summary The impact of water diversion on fish populations is a global issue. Many countries have invested substantial funding into research and implementation strategies to ensure fish are protected at diversions that take water out of rivers for agriculture and other human uses. The most common management action is the installation of fish screens, and a wide range of designs are presently available that suit a large range of diversions. The Murray–Darling Basin is the largest catchment in Australia and has been substantially developed over the past 100 years to store and divert water for that protect fish from escaping into the irrigation systems. Recent studies have determined that water diversions have substantial impacts on native fish populations, but there are presently no coordinated efforts for mitigation strategies. The purpose of this review is to highlight aspects of successful screening programmes worldwide and identify those that could be directly applied to the Murray–Darling Basin. The development of similar programmes in the United States, New Zealand and the United Kingdom has identified that sufficient information and technology exists to inform the development of fish screening programmes. There is no need to commence implementation from first principles, and substantial progress can be achieved by applying successful aspects of other programmes. By identifying existing designs, defining ecological targets, developing generalised guidelines appropriate for local conditions and engaging the community, a co‐ordinated and successful fish screening programme could be directly applied to the Murray–Darling Basin. This would have substantial benefits for the long‐term sustainability of native fish without compromising water supply requirements.  相似文献   

7.
In the last 100 years or so, desertification, degradation, and woody plant encroachment have altered huge tracts of semiarid rangelands. It is expected that the changes thus brought about significantly affect water balance in these regions; and in fact, at the headwater‐catchment and smaller scales, such effects are reasonably well documented. For larger scales, however, there is surprisingly little documentation of hydrological change. In this paper, we evaluate the extent to which streamflow from large rangeland watersheds in central Texas has changed concurrent with the dramatic shifts in vegetation cover (transition from pristine prairie to degraded grassland to woodland/savanna) that have taken place during the last century. Our study focused on the three watersheds that supply the major tributaries of the Concho River – those of the North Concho (3279 km2), the Middle Concho (5398 km2), and the South Concho (1070 km2). Using data from the period of record (1926–2005), we found that annual streamflow for the North Concho decreased by about 70% between 1960 and 2005. Not only did we find no downtrend in precipitation that might explain this reduced flow, we found no corresponding change in annual streamflow for the other two watersheds (which have more karst parent material). When we analyzed trends in baseflow (contributions from groundwater) and stormflow (runoff events linked to specific precipitation events), however, we found that in spite of large increases in woody plants, baseflow for all the watersheds has remained essentially consistent or has increased slightly since 1960. At the same time, stormflows were of smaller magnitude. Animal numbers have declined precipitously in the latter half of the last century. We suggest that these lower stormflows result from generally higher soil infiltrability due to generally improving range condition. There is no indication that the decline in streamflow is related to diminished groundwater flows caused by extraction of subsurface water by woody plants.  相似文献   

8.
水文变异下的黄河流域生态流量   总被引:2,自引:0,他引:2  
张强  李剑锋  陈晓宏  江涛 《生态学报》2011,31(17):4826-4834
使用t检验和Mann-Whitney U检验对黄河干流7个水文站月均流量进行水文变异分析,探讨了水文变异成因,在此基础上,确定变异前各月月均流量序列最适概率分布函数,将概率密度最大的月平均流量定义为河道内生态流量。经与Tennant法、最小月平均流量发和逐月径流法比较,考虑水文变异的河道内生态流量计算方法是可行、合理的。水文变异后,黄河干流7水文站月均流量普遍减少,月均流量满足河道内生态流量的频率降低。研究结果表明,人类活动是黄河生态系统水环境恶化的重要原因。在流域生态管理中,确保变异后生态流量满足频率与变异前相当。研究对于理解在当前气候变化与人类活动双重影响下,干旱半干旱区流域水资源科学管理具有一定理论与现实意义。  相似文献   

9.
This study examines fresh renewable water resources available for bioenergy feedstock production in the United States. The impacts of feedstock irrigation on surface and groundwater resources available to nonbioenergy sectors were quantified using a pair of water availability indexes: streamflow availability index and percolation flow availability index. The two metrics were applied to both historical (2008) and three possible future biomass production scenarios from the 2016 U.S. Billion‐Ton Report at the county level. For both historical and future scenarios, we found that the consumptive irrigation requirements for bioenergy feedstock account for <0.01% of annual streamflow in all but three counties in Nebraska. Results suggest that the irrigation demand of future biomass production could be supplied by annual renewable groundwater flow in about 94% of feedstock‐growing counties that use groundwater for irrigation, representing about 92% of production tonnage. Counties that require irrigation from nonrenewable groundwater resources are mostly located in the Northern Plains and Pacific regions. We also evaluated the sensitivity of crop water footprint estimation to soil moisture carryover by comparing blue water estimates from six different empirical and process‐based methods. Our findings suggest that accounting for preseason soil moisture is critical for representative blue water estimation, so that the irrigation water consumption is not overestimated. This is especially true in the Corn Belt region, where blue water estimates with and without preseason soil moisture would be about 1.9 versus 45.5 billion m3/year under the historical scenario. This difference is smaller in semiarid regions like the High Plains, but the blue water estimate can still triple if soil moisture is not considered. From the perspective of renewable surface water and groundwater resources, scaling feedstock production up in the High Plains and California will require careful planning integrated with water management strategies to improve water resource conservation.  相似文献   

10.
The hydrological and geomorphological impacts of traditional swidden cultivation in Montane Mainland Southeast Asia are virtually inconsequential, whereas the impacts associated with intensified replacement agricultural systems are often much more substantial. Negative perceptions toward swiddening in general by governments in the region beginning half a decade ago have largely been based on cases of forest conversion and land degradation associated with (a) intensified swidden systems, characterized by shortened fallow and extended cropping periods and/or (b) the widespread cultivation of opium for cash after the Second World War. Neither of these practices should be viewed as traditional, subsistence-based swiddening. Other types of intensive agriculture systems are now replacing swiddening throughout the region, including semi-permanent and permanent cash cropping, monoculture plantations, and greenhouse complexes. The negative impacts associated with these systems include changes in streamflow response, increased surface erosion, a higher probability of landslides, and the declination in stream water quality. Unlike the case for traditional swiddening, these impacts result because of several factors: (1) large portions of upland catchments are cultivated simultaneously; (2) accelerated hydraulic and tillage erosion occurs on plots that are cultivated repetitively with limited or no fallowing to allow recovery of key soil properties, including infiltration; (3) concentrated overland flow and erosion sources are often directly connected with the stream network; (4) root strength is reduced on permanently converted hillslopes; (5) surface and ground water extraction is frequently used for irrigation; and (6) and pesticides and herbicides are used. Furthermore, the commercial success of these systems relies on the existence of dense networks of roads, which are linear landscape features renowned for disrupting hydrological and geomorphological systems. A new conservation focus is needed to reduce the impacts of these intensified upland agricultural practices.  相似文献   

11.

Interbasin water transfers are becoming an increasingly common tool to satisfy municipal and agricultural water demand, but their impacts on movement and gene flow of aquatic organisms are poorly understood. The Grand Ditch is an interbasin water transfer that diverts water from tributaries of the upper Colorado River on the west side of the Continental Divide to the upper Cache la Poudre River on the east side of the Continental Divide. We used single nucleotide polymorphisms to characterize population genetic structure in cutthroat trout (Oncorhynchus clarkii) and determine if fish utilize the Grand Ditch as a movement corridor. Samples were collected from two sites on the west side and three sites on the east side of the Continental Divide. We identified two or three genetic clusters, and relative migration rates and spatial distributions of admixed individuals indicated that the Grand Ditch facilitated bidirectional fish movement across the Continental Divide, a major biogeographic barrier. Previous studies have demonstrated ecological impacts of interbasin water transfers, but our study is one of the first to use genetics to understand how interbasin water transfers affect connectivity between previously isolated watersheds. We also discuss implications on native trout management and balancing water demand and biodiversity conservation.

  相似文献   

12.
Determining the interaction and impact of surface runoff and subsurface flow processes on the environment has been hindered by our inability to characterize subsurface soil structures on a watershed scale. Ground penetrating radar (GPR) data were collected and evaluated in determining subsurface hydrology at four small watersheds in Beltsville, MD. The watersheds have similar textures, organic matter contents, and yield distributions. Although the surface slope was greater on one of the watersheds, slope alone could not explain why it also had a nitrate runoff flux that was 18 times greater than the other three watersheds. Only with knowledge of the subsurface hydrology could the surface runoff differences be explained. The subsurface hydrology was developed by combining GPR and surface topography in a geographic information system. Discrete subsurface flow pathways were identified and confirmed with color infrared imagery, real-time soil moisture monitoring, and yield monitoring. The discrete subsurface flow patterns were also useful in understanding observed nitrate levels entering the riparian wetland and first order stream. This study demonstrated the impact that subsurface stratigraphy can have on water and nitrate (NO3-N) fluxes exiting agricultural lands, even when soil properties, yield distributions, and climate are similar. Reliable protocols for measuring subsurface fluxes of water and chemicals need to be developed.  相似文献   

13.
The Asian kelp Undaria pinnatifida was discovered in southern California in the spring of 2000, and by the summer of 2001 had been collected at several California sites from Los Angeles to Long Beach Harbors and Catalina Island as far north as Monterey Harbor. From its native range in the northwestern Pacific, Undaria has now been introduced to the northeastern and southwestern Atlantic and the southwestern and northeastern Pacific, through a combination of intentional transport for cultivation, accidental transport with oysters, as fouling on vessel hulls, and possibly other means. In the northeastern Pacific, water temperatures are suitable for its establishment from at least Baja California to British Columbia, where it is likely to grow well in sheltered and partially sheltered waters.  相似文献   

14.
植被恢复及其对年均径流量影响的空间格局对黄土高原生态环境建设及水资源管理具有重要指导作用。在分析植被适宜性分布规律的基础上, 基于黄河中游河口-龙门区间100 m 地形高程模型(DEM)和专家经验进行了区域植被适宜性制图, 并基于参数率定后的多年平均蒸散量计算公式和水平衡模型, 估算了不同植树造林情景下年均径流量的变化。结果表明, 河龙区间符合植被带分布规律的适宜区植树面积为6.6×103 km2, 次适宜区植树面积为4.8×103 km2, 分别占研究区总面积的5.8%和4.3%。土地覆被现状条件下区域产水约为33.8 mm (38.07×108m3)。适宜区植树后, 区域产水减少量约为1.9 mm (2.12×108m3), 减少5.6%。适宜区和次适宜区均植树后, 区域产水减少量约为3.1 mm (3.49×108m3), 减少9.2%。空间分布格局表明, 区域局部减水最大达到48 mm。受气候条件影响, 东南部高降雨量地区的流域适宜植树面积达45.1%, 相应减水比例达36.0%。西北部低降雨量地区的流域植树面积约为0.7%, 相应的减水比例为0.4%。  相似文献   

15.
The impact of climate change on hydrology and water resources is one of the most critical issues facing the world in the next few decades. In particular, there is a need to quantify the risks associated with maintaining the security of resource quantity and quality, and to assess the effectiveness of potential management strategies. In this paper, we assess the impacts of climate variability and change on one aspect of river health. A simple model of Anabaena algal bloom occurrence at a weir pool in the lower Murrumbidgee River, Australia, has been coupled to a catchment model that is used to simulate streamflow, irrigation demand and diversions, dam water storage and releases, and decision-making by both irrigators and managers. Long-term climate data are obtained from a statistical downscaling algorithm, which, when applied to global climate model predictions can provide climate data suitable for driving the coupled model under a variety of climatic scenarios. The coupled model is then used to assess the impact of climate variability and projected climate change on the frequency, duration and magnitude of Anabaena blooms. The impact of two management strategies for bloom control are also assessed and it is shown that even a single, quite simple, resource-neutral, adaptive management strategy has the potential to substantially reduce the occurrence and impact of algal blooms and to more than compensate for the deleterious impacts of climate change. This result supports the notion that planning for the future can lead to positive outcomes in the present.  相似文献   

16.
Fundamental watershed-scale processes governing chemical flux to neighboring ecosystems are so poorly understood that effective strategies for mitigating chemical contamination cannot be formulated. Characterization of evapotranspiration, surface runoff, plant uptake, subsurface preferential flow, behavior of the chemicals in neighboring ecosystems, and an understanding of how crop management practices influence these processes are needed. Adequate characterization of subsurface flow has been especially difficult because conventional sampling methods are ineffective for measuring preferential flow of water and solutes. A sampling strategy based on ground-penetrating radar (GPR) mapping of subsurface structures coupled with near real-time soil moisture data, surface topography, remotely sensed imagery, and a geographic information system (GIS) appears to offer a means of accurately identifying subsurface preferential flow pathways. Four small adjacent watersheds draining into a riparian wetland and first-order stream at the USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD are being studied with this protocol. The spatial location of some preferential flow pathways for chemicals exiting these agricultural watersheds to the neighboring ecosystems have been identified. Confirmation of the pathways is via examination of patterns in yield monitor data and remote sensing imagery.  相似文献   

17.
Recent experiments support the idea that upper thermal limits of aquatic insects arise, at least in part, from a lack of sufficient oxygen: rising temperatures typically stimulate metabolic demand for oxygen more than they increase rates of oxygen supply from the environment. Consequently, factors influencing oxygen supply, like water flow, should also affect thermal and hypoxia tolerance. We tested this hypothesis by measuring the effects of experimentally manipulated flows on the heat and hypoxia tolerance of aquatic nymphs of the giant salmonfly (Plecoptera: Pteronarcys californica), a common stonefly in western North America. As predicted, stoneflies in flowing water (10 cm s−1) tolerated water that was approximately 4°C warmer and that contained approximately 15% less oxygen than did those in standing water. Our results imply that the impacts of climate change on streamflow, such as changes in patterns of precipitation and decreased snowpack, will magnify the threats to aquatic insects from warmer water temperatures and lower oxygen levels.  相似文献   

18.
The capacity of forests to mitigate global climate change can be negatively influenced by tropospheric ozone that impairs both photosynthesis and stomatal control of plant transpiration, thus affecting ecosystem productivity and watershed hydrology. We have evaluated individual and interactive effects of ozone and climate on late season streamflow for six forested watersheds (38–970 000 ha) located in the Southeastern United States. Models were based on 18–26 year data records for each watershed and involved multivariate analysis of interannual variability of late season streamflow in response to physical and chemical climate during the growing season. In all cases, some combination of ozone variables significantly improved model performance over climate‐only models. Effects of ozone and ozone × climate interactions were also consistently negative and were proportional to variations in actual ozone exposures, both spatially across the region and over time. Conservative estimates of the influence of ozone on the variability (R2) of observed flow ranged from 7% in the area of lowest ozone exposure in West Virginia to 23% in the areas of highest exposure in Tennessee. Our results are supported by a controlled field study using free‐air concentration enrichment methodology which indicated progressive ozone‐induced loss of stomatal control over tree transpiration during the summer in mixed aspen‐birch stands. Despite the frequent assumption that ozone reduces tree water loss, our findings support increasing evidence that ozone at near ambient concentrations can reduce stomatal control of leaf transpiration, and increase water use. Increases in evapotranspiration and associated streamflow reductions in response to ambient ozone exposures are expected to episodically increase the frequency and severity of drought and affect flow‐dependent aquatic biota in forested watersheds. Regional and global models of hydrologic cycles and related ecosystem functions should consider potential interactions of ozone with climate under both current and future warmer and ozone‐enriched climatic conditions.  相似文献   

19.
Tropical stream ecosystems in montane forest watersheds are important centers of endemism and diversity and provide essential ecosystem services. These habitats are subject to a variety of stressors, including the conversion of adjacent terrestrial habitats from forest to agriculture, but the impacts of these anthropogenic effects are largely unknown because of the paucity of studies in these systems. In montane habitats in the wet tropics, large-scale cultivation of tea is common and can represent an important source of income at local and national scales. However, little is known about how tea cultivation impacts adjacent stream ecosystems. In this study, we examine stream macroinvertebrate assemblages in a biodiversity hotspot the East Usambara Mountains, Tanzania. Specifically, we compare diversity of macroinvertebrate assemblages found on cobbles in stream riffles in watersheds dominated by forest with those surrounded by tea cultivation. We found that streams surrounded by tea were characterized by significantly lower dissolved oxygen and had lower total estimated species richness and number of families. Furthermore, the richness of invertebrate taxa known to be sensitive to anthropogenic disturbance were substantially reduced in tea streams and general assemblage-level analysis shows significant differences in the composition of macroinvertebrate assemblages between tea and forested streams. Our results suggest that tea cultivation may reduce stream habitat quality and biodiversity in the East Usambaras. Further research is needed to evaluate the effects of tea cultivation on streams over longer times scales and to address methods for minimizing negative effects of agriculture on montane stream communities.  相似文献   

20.
Louisiana has had a high rate of coastal wetland loss due mainly to the isolation of the Mississippi River from the deltaic plain. We conducted a feasibility analysis of using once-through, non-contact industrial cooling water for restoring subsiding forested wetlands in coastal Louisiana. We considered the impacts of heated water and high nutrient and sediment concentrations. River diversions introduce sediments and nutrients to stimulate the productivity and accretion of coastal wetlands. Since increases in sediments and nutrients can cause water quality problems, we analyzed the assimilative capacity of the swamp. Based on a loading rates analysis, we estimated that the following nutrient reductions would occur: 75% for NO3, 50% for TN, 60–75% for TP, and 100% for suspended sediments. Because of the concern of impacts from heated water, it is likely that the temperature of the cooling water will have to be decreased before discharge. Altering the duration and location of the discharge are ways to minimize the impact of temperature. We recommend that a pilot study be carried out to determine the effects of heated water on the functioning of the system, the retention of sediments and nutrients, and the impacts of different discharge scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号