首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteasome-mediated degradation of proteins is a vital cellular process and is performed by the ubiquitin-dependent proteasome system (UPS) and the ubiquitin-independent proteasome system (UIPS). While both systems are necessary to maintain healthy cell function, many disease states are characterized by reduced activity of the UPS, and the UIPS cannot by itself maintain proper protein levels. It has been suggested that the 20S core particle (20S CP), the isoform of the proteasome in the UIPS that can degrade proteins without a ubiquitin tag, can be stimulated with a small molecule to assist the 20S CP to accept and hydrolyze substrates more rapidly. Several small molecule stimulators of the 20S CP have since been discovered, including AM-404, an arachidonic acid derivative. AM-404 has previously been shown to inhibit fatty acid amide hydrolase activity. We wished to evaluate what structural components of AM-404 are required to stimulate the 20S CP with the long-term goal of using this information to design a stimulator with better drug-like qualities. We synthesized numerous derivatives of AM-404, varying the chain length, substitutions, and degree of unsaturation. Through this endeavor, we obtained several molecules capable of stimulating the 20S CP to various degrees. We discovered that though chain length is important, the presence of a cis-alkene in a specific location in the aliphatic chain has the greatest impact on the ability to stimulate the 20S CP. Two of the derivatives maintain modest stimulatory activity, and have improved toxicity over AM-404.  相似文献   

2.
3.
Abstract

Nuclear receptor (NR) agonists induce activation of mitogen-activated protein kinases (MAPK) through an yet unknown rapid non-genomic mechanism. Vice versa, NR are targets for phosphorylation by MAPK. By multiple alignment of the amino acid sequences and comparative analysis of the secondary and tertiary structures we identified four peptides in MAPK with similarity to bona fide protein-protein-interaction motifs in NR. In both molecule species, these motifs mediate selective docking to dimerization partners, coregulators or phosphoacceptors. We therefore propose that similar motifs may direct the site-specific association of NR with MAPK. Based on mutual allosteric interactions within a kinase-receptor complex, we discuss a novel principle how NR-agonists may regulate kinase activity and thus expression of hormone-dependent genes.  相似文献   

4.
The impaired ubiquitin-proteasome activity is believed to be one of the leading factors that contribute to Parkinson disease pathogenesis partially by causing alpha-synuclein aggregation. However, the relationship between alpha-synuclein aggregation and the impaired proteasome activity is yet unclear. In this study, we examined the effects of three soluble alpha-synuclein species (monomer, dimer, and protofibrils) on the degradation activity of the 26 S proteasome by reconstitution of proteasomal degradation using highly purified 26 S proteasomes and model substrates. We found that none of the three soluble alpha-synuclein species impaired the three distinct peptidase activities of the 26 S proteasome when using fluorogenic peptides as substrates. In striking contrast, alpha-synuclein protofibrils, but not monomer and dimer, markedly inhibited the ubiquitin-independent proteasomal degradation of unstructured proteins and ubiquitin-dependent degradation of folded proteins when present at 5-fold molar excess to the 26 S proteasome. Together these results indicate that alpha-synuclein protofibrils have a pronounced inhibitory effect on 26 S proteasome-mediated protein degradation. Because alpha-synuclein is a substrate of the proteasome, impaired proteasomal activity could further cause alpha-synuclein accumulation/aggregation, thus creating a vicious cycle and leading to Parkinson disease pathogenesis. Furthermore we found that alpha-synuclein protofibrils bound both the 26 S proteasome and substrates of the 26 S proteasome. Accordingly we propose that the inhibitory effect of alpha-synuclein protofibrils on 26 S proteasomal degradation might result from impairing substrate translocation by binding the proteasome or sequestrating proteasomal substrates by binding the substrates.  相似文献   

5.
IκB kinase β (IKKβ), a major kinase downstream of various proinflammatory signals, mediates multiple cellular functions through phosphorylation and regulation of its substrates. On the basis of protein sequence analysis, we identified arrest-defective protein 1 (ARD1), a protein involved in apoptosis and cell proliferation processes in many human cancer cells, as a new IKKβ substrate. We provided evidence showing that ARD1 is indeed a bona fide substrate of IKKβ. IKKβ physically associated with ARD1 and phosphorylated it at Ser209. Phosphorylation by IKKβ destabilized ARD1 and induced its proteasome-mediated degradation. Impaired growth suppression was observed in ARD1 phosphorylation-mimic mutant (S209E)-transfected cells as compared with ARD1 non-phosphorylatable mutant (S209A)-transfected cells. Our findings of molecular interactions between ARD1 and IKKβ may enable further understanding of the upstream regulation mechanisms of ARD1 and of the diverse functions of IKKβ.  相似文献   

6.

Background

Distinguishing bona fide (i.e. natural) and fiat (i.e. artificial) physical boundaries plays a key role for distinguishing natural from artificial material entities and is thus relevant to any scientific formal foundational top-level ontology, as for instance the Basic Formal Ontology (BFO). In BFO, the distinction is essential for demarcating two foundational categories of material entity: object and fiat object part. The commonly used basis for demarcating bona fide from fiat boundary refers to two criteria: (i) intrinsic qualities of the boundary bearers (i.e. spatial/physical discontinuity, qualitative heterogeneity) and (ii) mind-independent existence of the boundary. The resulting distinction of bona fide and fiat boundaries is considered to be categorial and exhaustive.

Methodology/Principal Findings

By referring to various examples from biology, we demonstrate that the hitherto used distinction of boundaries is not categorial: (i) spatial/physical discontinuity is a matter of scale and the differentiation of bona fide and fiat boundaries is thus granularity-dependent, and (ii) this differentiation is not absolute, but comes in degrees. By reducing the demarcation criteria to mind-independence and by also considering dispositions and historical relations of the bearers of boundaries, instead of only considering their spatio-structural properties, we demonstrate with various examples that spatio-structurally fiat boundaries can nevertheless be mind-independent and in this sense bona fide.

Conclusions/Significance

We argue that the ontological status of a given boundary is perspective-dependent and that the strictly spatio-structural demarcation criteria follow a static perspective that is ignorant of causality and the dynamics of reality. Based on a distinction of several ontologically independent perspectives, we suggest different types of boundaries and corresponding material entities, including boundaries based on function (locomotion, physiology, ecology, development, reproduction) and common history (development, heredity, evolution). We argue that for each perspective one can differentiate respective bona fide from fiat boundaries.  相似文献   

7.
Mechanistic studies of RNA processing in the RNA-Induced Silencing Complex (RISC) have been hindered by lack of methods for continuous monitoring of enzymatic activity. “Quencherless” fluorogenic substrates of RNAi enzymes enable continuous monitoring of enzymatic reactions for detailed kinetics studies. Recombinant RISC enzymes cleave the fluorogenic substrates targeting human thymidylate synthase (TYMS) and hypoxia-inducible factor 1-α subunit (HIF1A). Using fluorogenic dsRNA DICER substrates and fluorogenic siRNA, DICER+ARGONAUTE2 mixtures exhibit synergistic enzymatic activity relative to either enzyme alone, and addition of TRBP does not enhance the apparent activity. Titration of AGO2 and DICER in enzyme assays suggests that AGO2 and DICER form a functional high-affinity complex in equimolar ratio. DICER and DICER+AGO2 exhibit Michaelis-Menten kinetics with DICER substrates. However, AGO2 cannot process the fluorogenic siRNA without DICER enzyme, suggesting that AGO2 cannot self-load siRNA into its active site. The DICER+AGO2 combination processes the fluorogenic siRNA substrate (K m=74 nM) with substrate inhibition kinetics (K i=105 nM), demonstrating experimentally that siRNA binds two different sites that affect Dicing and AGO2-loading reactions in RISC. This result suggests that siRNA (product of DICER) bound in the active site of DICER may undergo direct transfer (as AGO2 substrate) to the active site of AGO2 in the DICER+AGO2 complex. Competitive substrate assays indicate that DICER+AGO2 cleavage of fluorogenic siRNA is specific, since unlabeled siRNA and DICER substrates serve as competing substrates that cause a concentration-dependent decrease in fluorescent rates. Competitive substrate assays of a series of DICER substrates in vitro were correlated with cell-based assays of HIF1A mRNA knockdown (log-log slope=0.29), suggesting that improved DICER substrate designs with 10-fold greater processing by the DICER+AGO2 complex can provide a strong (~2800-fold) improvement in potency for mRNA knockdown. This study lays the foundation of a systematic biochemical approach to optimize nucleic acid-based therapeutics for Dicing and ARGONAUTE2-loading for improving efficacy.  相似文献   

8.

Background

Bacillus anthracis is the bacterium responsible for causing anthrax. The ability of B. anthracis to cause disease is dependent on a secreted virulence factor, lethal toxin, that promotes survival of the bacteria in the host by impairing the immune response. A well-studied effect of lethal toxin is the killing of macrophages, although the molecular mechanisms involved have not been fully characterized.

Methodology/Principal Findings

Here, we demonstrate that celastrol, a quinone methide triterpene derived from a plant extract used in herbal medicine, inhibits lethal toxin-induced death of RAW264.7 murine macrophages. Celastrol did not prevent cleavage of mitogen activated protein kinase kinase 1, a cytosolic target of the toxin, indicating that it did not inhibit the uptake or catalytic activity of lethal toxin. Surprisingly, celastrol conferred almost complete protection when it was added up to 1.5 h after intoxication, indicating that it could rescue cells in the late stages of intoxication. Since the activity of the proteasome has been implicated in intoxication using other pharmacological agents, we tested whether celastrol blocked proteasome activity. We found that celastrol inhibited the proteasome-dependent degradation of proteins in RAW264.7 cells, but only slightly inhibited proteasome-mediated cleavage of fluorogenic substrates in vitro. Furthermore, celastrol blocked stimulation of IL-18 processing, indicating that celastrol acted upstream of inflammasome activation.

Conclusions/Significance

This work identifies celastrol as an inhibitor of lethal toxin-mediated macrophage lysis and suggests an inhibitory mechanism involving inhibition of the proteasome pathway.  相似文献   

9.
Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.  相似文献   

10.
Huntington’s disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdh Q7/Q7) or 111 glutamines in the huntingtin protein, either heterozygous (STHdh Q7/Q111) or homozygous (STHdh Q111/Q111). Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdh Q7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts.  相似文献   

11.
12.
Induction of NFkappaB is a highly regulated process requiring phosphorylation, ubiquitination, and proteasome-mediated degradation of the cytosolic inhibitor IkappaBalpha. Analyses of the regulation of IkappaBalpha in TNF-alpha-treated T lymphocytes from young and elderly donors revealed severely compromised degradation of IkappaBalpha in T cells from the elderly. Examination of activation-induced phosphorylation and ubiquitination of IkappaBalpha did not demonstrate any significant age-related alterations. However, examination of proteasome activity in these T cells using fluorogenic peptide assays revealed a significant age-related decline in chymotryptic activity. These results suggest that a decline in proteasome activity results in a failure to fully degrade IkappaBalpha in the elderly. This failure to degrade IkappaBalpha may underlie both the observed decrease in NFkappaB induction and the IL-2 receptor expression in TNF-treated T cells during aging. Thus, decreased proteasome-mediated degradation may be central to immune dysfunction that accompanies aging.  相似文献   

13.
The Naegleria are ubiquitous free-living amoebae and are characterized by the presence of three phases in their biological cycle: trophozoite, cyst and flagellate. Of this genus, only Naegleria fowleri has been reported as pathogenic to humans. The proteasome is a multi-catalytic complex and is considered to be the most important structure responsible for the degradation of intracellular proteins. This structure is related to the maintenance of cellular homeostasis and, in pathogenic microorganisms, to the modulation of their virulence. Until now, the proteasome and its function have not been described for the Naegleria genus. In the current study, using bioinformatic analysis, protein sequences homologous to those reported for the subunits of the 20S proteasome in other organisms were found, and virtual modelling was used to determine their three-dimensional structure. The presence of structural and catalytic subunits of the 20S proteasome was detected by Western and dot blot assays. Its localization was observed by immunofluorescence microscopy to be mainly in the cytoplasm, and a leading role of the chymotrypsin-like catalytic activity was determined using fluorogenic peptidase assays and specific proteasome inhibitors. Finally, the role of the 20S proteasome in the proliferation and differentiation of Naegleria genus trophozoites was demonstrated.  相似文献   

14.
The conserved Blm10/PA200 activators bind to the proteasome core particle gate and facilitate turnover of peptides and unfolded proteins in vitro. We report here that Blm10 is required for the maintenance of functional mitochondria. BLM10 expression is induced 25-fold upon a switch from fermentation to oxidative metabolism. In the absence of BLM10, Saccharomyces cerevisiae cells exhibit a temperature-sensitive growth defect under oxidative growth conditions and produce colonies with dysfunctional mitochondria at high frequency. Loss of BLM10 leads to reduced respiratory capacity, increased mitochondrial oxidative damage, and reduced viability in the presence of oxidative stress or death stimuli. In the absence of BLM10, increased fragmentation of the mitochondrial network under oxidative stress is observed indicative of elevated activity of the mitochondrial fission machinery. The degradation of Dnm1, the main factor mediating mitochondrial fission, is impaired in the absence of BLM10 in vitro and in vivo. These data suggest that the mitochondrial functional and morphological changes observed are related to elevated Dnm1 levels. This hypothesis is supported by the finding that cells that constitutively overexpress DNM1 display the same mitochondrial defects as blm10Δ cells. The data are consistent with a model in which Blm10 proteasome-mediated turnover of Dnm1 is required for the maintenance of mitochondrial function and provides cytoprotection under conditions that induce increased mitochondrial damage and programmed cell death.  相似文献   

15.
The thiazide-sensitive NaCl cotransporter (NCC, SLC12A3) mediates salt reabsorption in the distal nephron of the kidney and is the target of thiazide diuretics, which are commonly prescribed to treat hypertension. Mutations in NCC also give rise to Gitelman syndrome, a hereditary salt-wasting disorder thought in most cases to arise from impaired NCC biogenesis through enhanced endoplasmic reticulum-associated degradation (ERAD). Because the machinery that mediates NCC quality control is completely undefined, we employed yeast as a model heterologous expression system to identify factors involved in NCC degradation. We confirmed that NCC was a bona fide ERAD substrate in yeast, as the majority of NCC polypeptide was integrated into ER membranes, and its turnover rate was sensitive to proteasome inhibition. NCC degradation was primarily dependent on the ER membrane-associated E3 ubiquitin ligase Hrd1. Whereas several ER luminal chaperones were dispensable for NCC ERAD, NCC ubiquitination and degradation required the activity of Ssa1, a cytoplasmic Hsp70 chaperone. Compatible findings were observed when NCC was expressed in mammalian kidney cells, as the cotransporter was polyubiquitinated and degraded by the proteasome, and mammalian cytoplasmic Hsp70 (Hsp72) coexpression stimulated the degradation of newly synthesized NCC. Hsp70 also preferentially associated with the ER-localized NCC glycosylated species, indicating that cytoplasmic Hsp70 plays a critical role in selecting immature forms of NCC for ERAD. Together, these results provide the first survey of components involved in the ERAD of a mammalian SLC12 cation chloride cotransporter and provide a framework for future studies on NCC ER quality control.  相似文献   

16.
PI31 is a previously described inhibitor of 20S proteasomes. Using recombinant PI31 we have analyzed its effect on proteasomal hydrolyzing activity of short fluorogenic substrates and of a synthetic 40-mer polypeptide. In addition, we investigated its influence on the activation of 20S proteasome by the proteasome activator PA28. PI31 inhibits polypeptide degradation already at concentrations which only partially inhibit fluorogenic substrate turnover and immunosubunits do not influence the PI31 binding affinity. Furthermore our data demonstrate that PI31 is a potent competitor of PA28-mediated activation.  相似文献   

17.
Ubiquilin proteins facilitate delivery of ubiquitinated proteins to the proteasome for degradation. Interest in the proteins has been heightened by the discovery that gene mutations in UBQLN2 cause dominant inheritance of amyotrophic lateral sclerosis (ALS). However, the mechanisms by which the mutations cause ALS are not known. Here we report on the underlying defect of ubiquilin-2 proteins containing ALS-linked mutations in affecting proteasome-mediated degradation. We found that overexpression of ubiquilin-2 proteins containing any one of five different ALS mutations slow degradation of Myc, a prototypic proteasome substrate. Examination of coprecipitating proteins indicated that the mutant proteins are generally capable of binding polyubiquitinated proteins, but defective in binding the proteasome. GST-pulldown studies revealed that many of the mutants bind weaker to the S5a subunit of the proteasome, compared with wild type (WT) ubiquilin-2 protein. The results suggest the mutant proteins are unable to deliver their captured cargo to the proteasome for degradation, which presumably leads to toxicity. Quantification of cell death is consistent with this idea. Measurement of protein turnover further indicated the mutant proteins have longer half-lives than WT ubiquilin-2. Our studies provide novel insight into the mechanism by which ALS-linked mutations in UBQLN2 interfere with protein degradation.  相似文献   

18.
BackgroundCurcumin functions as a proteasome inhibitor. However, the molecular mechanisms behind this action need more detailed explanations.PurposeThis study aimed to investigate the inhibitory effect of curcumin on 20S proteasome activity and to elucidate its exact mechanism in triple-negative breast cancer (TNBC) MDA-MB-231 cells.MethodsProteasomal peptidase activities were assayed using synthetic fluorogenic peptide substrates. Knockdown or overexpression of microRNA (miRNA or miR) or protein was used to investigate its functional effect on downstream cellular processes. BrdU (5‑bromo‑2′-deoxyuridine) assay was performed to identify cell proliferation. Western blot and quantitative real-time PCR(qRT-PCR) were carried out to determine protein abundance and miRNA expression, respectively. Correlations between protein expressions, miRNA levels, and proteasome activities were analyzed in TNBC tissues. Xenograft tumor model was performed to observe the in vivo effect of curcumin on 20S proteasome activity.ResultsCurcumin significantly reduced PSMB5 protein levels, accompanied with a reduction in the chymotrypsin-like (CT-l) activity of proteasome 20S core. Loss of PSMB5 markedly inhibited the CT-l activity of 20S proteasome. Furthermore, curcumin treatment significantly elevated miR-142–3p expression. PSMB5 was a direct target of miR-142–3p and its protein levels were negatively regulated by miR-142–3p. Moreover, histone acetyltransferase p300 suppressed miR-142–3p expression. Overexpression of p300 mitigated the promotive effect of curcumin on miR-142–3p expression. The correlations among p300 abundances, miR-142–3p levels, PSMB5 expressions, and the CT-l activities of 20S proteasome were evidenced in TNBC tissues. In addition, loss of p300 and PSMB5 reduced cell proliferation. Inhibition of miR-142–3p significantly attenuated the inhibitory impact of curcumin on cell proliferation. These curcumin-induced changes on p300, miR-142–3p, PSMB5, and 20S proteasome activity were further confirmed in in vivo solid tumor model.ConclusionThese findings demonstrated that curcumin suppressed p300/miR-142–3p/PSMB5 axis leading to the inhibition of the CT-l activity of 20S proteasome. These results provide a novel and alternative explanation for the inhibitory effect of curcumin on proteasome activity and also raised potential therapeutic targets for TNBC treatment.  相似文献   

19.
PML, the organizer of nuclear bodies (NBs), is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As2O3) enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM) within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET) assay in living cells, we found that As2O3 enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI). In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As2O3-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As2O3-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As2O3-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As2O3.  相似文献   

20.
The strength of the interaction between the catalytic and regulatory subunits in protein kinase A differs among species. The linker region from regulatory subunits is non-conserved. To evaluate the participation of this region in the interaction with the catalytic subunit, we have assayed its effect on the enzymatic properties of the catalytic subunit. Protein kinase A from three fungi, Mucor rouxii, Mucor circinelloides and Saccharomyces cerevisiae have been chosen as models. The R-C interaction is explored by using synthetic peptides of 8, 18 and 47 amino acids, corresponding to the R subunit autophosphorylation site plus a variable region toward the N terminus (0, 10, or 39 residues). The Km of the catalytic subunits decreased with the length of the peptide, while the Vmax increased. Viscosity studies identified product release as the rate limiting step for phosphorylation of the longer peptides. Pseudosubstrate derivatives of the 18 residue peptides did not display a competitive inhibition behavior toward either kemptide or a bona fide protein substrate since, at low relative pseudosubstrate/substrate concentration, stimulation of kemptide or protein substrate phosphorylation was observed. The behavior was mimicked by intact R. We conclude that in addition to its negative regulatory role, the R subunit stimulates C activity via distal interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号