首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Deepwater Horizon (DWH) spill released 4.9 million barrels of oil into the Gulf of Mexico (GoM) over 87 days. Sediment and water sampling efforts were concentrated SW of the DWH and in coastal areas. Here we present geochemistry data from sediment cores collected in the aftermath of the DWH event from 1000 – 1500 m water depth in the DeSoto Canyon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm intervals) in order to evaluate the concentration, composition and input of hydrocarbons to the seafloor. Specifically, we analyzed total organic carbon (TOC), aliphatic, polycyclic aromatic hydrocarbon (PAHs), and biomarker (hopanes, steranes, diasteranes) compounds to elucidate possible sources and transport pathways for deposition of hydrocarbons. Results showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to 2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event, both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1) sinking of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended particulate material), and 2) advective transport and direct contact of the deep plume with the continental slope surface sediments between 1000-1200 m. Our findings underline the complexity of the depositional event observed in the aftermath of the DWH event in terms of multiple sources, variable concentrations, and spatial (depth-related) variability in the DeSoto Canyon, NE of the DWH wellhead.  相似文献   

2.
The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events, such as the “Latest Danian Event” ("LDE", ~62.18 Ma), specifically from an open ocean perspective. Here we present new foraminiferal isotope (δ13C, δ18O) and faunal data from Ocean Drilling Program (ODP) Site 1210 at Shatsky Rise (Pacific Ocean) in order to reconstruct the prevailing paleoceanographic conditions. The studied five-meter-thick succession covers ~900 kyr and includes the 200-kyr-lasting LDE. All groups surface dwelling, subsurface dwelling and benthic foraminifera show a negative δ13C excursion of >0.6‰, similar in magnitude to the one previously reported from neighboring Site 1209 for benthic foraminifera. δ18O-inferred warming by 1.6 to 2.8°C (0.4–0.7‰ δ18O measured on benthic and planktic foraminiferal tests) of the entire water column accompanies the negative δ13C excursion. A well stratified upper ocean directly before and during the LDE is proposed based on the stable isotope gradients between surface and subsurface dwellers. The gradient is less well developed, but still enhanced after the event. Isotope data are supplemented by comprehensive planktic foraminiferal faunal analyses revealing a dominance of Morozovella species together with Parasubbotina species. Subsurface-dwelling Parasubbotina shows high abundances during the LDE tracing changes in the strength of the isotope gradients and, thus, may indicate optimal living conditions within a well stratified surface ocean for this taxon. In addition, distinct faunal changes are reported like the disappearance of Praemurica species right at the base of the LDE and the continuous replacement of M. praeangulata with M. angulata across the LDE.  相似文献   

3.
Noncalcareous Pleistocene sediments of the Central Arctic Ocean contain sparse benthic foraminiferal assemblages consisting entirely of agglutinated taxa. Deep water agglutinated foraminifera are studied from two piston cores collected from the Lomonosov Ridge and Amundsen Basin [Cores PS 2177-5 (KAL) and 2176-3 (KAL)]. Core PS 2177-5 (KAL) contains an assemblage of 10 species, dominated by Cyclammina pusilla Brady, and is interpreted to reflect a bathyal environment with variable organic flux and nutrition levels. Core PS 2176-3 (KAL) in the Amundsen Basin yielded a very depauperate benthic foraminiferal assemblage. It is assumed that the environment was inhospitable for agglutinated foraminifera.  相似文献   

4.
Comparisons of ambient bottom-water geochemistry and stable isotopic values of the tests of living (stained) calcareous benthic foraminifera from the North Pacific (on the Aleutian Margin, water depth 1988 m) and Murray Canyons group in the Southern Indian Ocean (Australian Margin, water depths 2476 m and 1634 m) provide modern environmental analogs to calibrate paleoenvironmental assessments. Consistent with the hypothesis that microhabitat preferences influence foraminiferal isotopic values, benthic foraminifera from both margins were depleted in 13C with respect to bottom-water dissolved inorganic carbon (DIC). The carbon isotope values of deep infaunal foraminifera (Chilostomella oolina, Globobulimina pacifica) showed greater differences from estimates of those of DIC than shallow benthic foraminifera (Bulimina mexicana, Bolivinita quadrilatera, Pullenia bulloides). This study provides new isotopic and ecological information for B. quadrilatera. The mean Δδ13C value, defined as foraminiferal δ13C values minus estimated ambient δ13C values from the Aleutian Margin, is 0.97‰ higher for G. pacifica than the mean from the Murray Canyon. This difference may result either from genetic or biological differences between the populations or from differences in environmental isotopic influences (such as pore water differences) that were not accounted for in the equilibrium calculations. These analyses provide calibration information for the evaluation of bottom water conditions and circulation patterns of ancient oceans based on fossil foraminiferal geochemistry.  相似文献   

5.
Marker events to define the stratotype for the base of the Lutetian Stage are poorly defined. To elucidate such markers and characterize palaeoenvironmental turnovers, we conducted an integrated study of the Ypresian–Lutetian (Y–L; early-middle Eocene) transition at the continuous Agost section (southeastern Spain). This 115-m-thick section, which consists of hemipelagic marls intercalated with hemipelagic limestones and turbidity sandstones, spans from planktic foraminiferal Zones P9 to P12 (E7 to E10) and calcareous nannofossil Zones CP11 to CP14a (NP13 to NP16). We report quantitative analyses of planktic and benthic foraminifera and characterization of trace fossil assemblages that are integrated with mineralogical analyses.Relative to benthic forms, planktic foraminifera constitute more than 80% of the foraminiferal assemblage. We found that the most abundant planktic species belong to the genera Acarinina, Morozovella, Subbotina, and Pseudohastigerina. Benthic foraminiferal assemblages are strongly dominated by calcareous taxa, with bolivinids being the most abundant group. Trace fossils showed the succession Nereites–Zoophycos–Cruziana ichnofacies throughout the Agost section. In addition to changes in palaeobathymetry, we deduced that quantity and quality of organic matter flux influenced by turbidity currents are the main factors controlling benthic assemblages. We distinguished several mineralogical boundaries at the Agost section, each associated with lithological facies changes suggesting a change in provenance rather than changes in weathering conditions. We made three observations that indicate an increase in sea water temperatures or a possible hyperthermal event related to the first occurrence (FO) of hantkeninids (i.e., the P9/P10 boundary): 1) a distinct peak in abundance of the benthic foraminifera Aragonia aragonensis; 2) the low-diversity of benthic foraminiferal assemblages; and 3) the occurrence of the planktic foraminifera Clavigerinella eocenica and Clavigerinella jarvisi. Benthic foraminiferal and trace fossil assemblages also suggest an associated relative fall of sea level from upper-middle bathyal to sublittoral depths. These characteristic indicators point to this boundary as a promising feature for defining the Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage. However, complementary magnetobiostratigraphic studies carried out at the Agost section point to the FO of calcareous nannofossil Blackites inflatus (base of CP12b), which occurred 3–5 Myr before the P9/P10 boundary, as the most suitable primary marker event. Whatever the marker event chosen, all the successive events recognized at the Agost section allow a complete characterization of the Y–L transition, and thus this section may be a suitable candidate to locate the GSSP for the Ypresian/Lutetian boundary.  相似文献   

6.
Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in benthic foraminiferal and diatom assemblages provides additional palaeoceanographic evidence. AMS radiocarbon dating of the sediments and oxygen isotope stratigraphy serve as the basis for the age models of the cores for the last 20 14C kyr and for correlation between environmental variations in the Okhotsk Sea, and regional and global climate changes. Benthic foraminiferal assemblages in the two cores (depth 1590 and 1175 m) varied with time, so that we could recognise seven zones with different species composition. Changes in the benthic foraminiferal assemblages parallel major environmental and productivity variations. During the last glaciation, fluxes of organic matter to the sea floor showed strong seasonal variations, indicated by the presence of abundant A. weddellensis and infaunal Uvigerina spp. Benthic foraminiferal assemblages changed with warming at 12.5–11 and 10–8 14C kyr BP, when productivity blooms and high organic fluxes were coeval with global meltwater pulses 1A and 1B. Younger Dryas cooling caused a decline in productivity (11–10 kyr BP) affecting the benthic faunal community. Subsequent warming triggered intensive diatom production, opal accumulation and a strong oxygen deficiency, causing significant changes in benthic fauna assemblages from 5.26–4.4 kyr BP to present time.  相似文献   

7.
The pore-water geochemistry and benthic foraminiferal assemblages of sediments from two slope sites and within the central portion of the Santa Barbara Basin were characterized between February 1988 and July 1989. The highest foraminiferal numerical densities (1197 cm–3 as determined by an ATP assay) occurred at a slope site in June 1988 (550 m) in partially laminated sediments. In continuously laminated sediments from the central basin, foraminifera were found living (as determined by ATP assay) in October 1988 to depths of 4 cm, and specimens prepared for transmission electron microscopy were found with intact organelles to 3 cm, indicating their inhabitation of anoxic pore waters. Ultrastructural data from Nonionella stella is consistent with the hypothesis that this species can survive by anaerobic respiration. However, the benthic foraminifera appear unable to survive prolonged anoxia. The benthic foraminiferal population was completely dead in July 1989 when bottom water O2 was undetectable.  相似文献   

8.
We studied planktic and small benthic foraminifera from the Fuente Caldera section, southern Spain, across the Eocene–Oligocene transition. Benthic foraminifera indicate lower bathyal depths for the late Eocene and earliest Oligocene. Detailed high-resolution sampling and biostratigraphical data allowed us to date precisely layers with evidence for meteorite impact (Ni-rich spinel), which occur in the lower part of the planktic foraminiferal Globigerapsis index Biozone and in the middle part of the small benthic foraminiferal Cibicidoides truncanus (BB4) Biozone (middle Priabonian, late Eocene). Major turnovers of foraminifera occur at the Eocene/Oligocene boundary, only. The impact did not occur at a time of planktic or benthic foraminiferal extinction events, and the late Eocene meteorite impacts did thus not cause extinction of foraminifera. The most plausible cause of the Eocene/Oligocene boundary extinctions is the significant cooling, which generated glaciation in Antarctica and eliminated most of the warm and surface-dwelling foraminifera.  相似文献   

9.
Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs is consistent with the disturbance-mosaic (microhabitat heterogeneity) hypothesis.Calculations of the FORAM Index (FI), a single metric index to assess reef vitality, indicate that all fore- and most back-reef environments support active carbonate accretion and provide habitat suitability for carbonate producers dependent on algal symbiosis. Lowest suitability values were recorded within the innermost bays, an area where natural and increasing anthropogenic influences continue to impact the reefs. The presence of habitat specific assemblages and numerical abundance values of individual taxa show that benthic foraminifera are excellent recorders of environmental perturbations and good indicators useful in modern and ancient ecological and environmental studies.  相似文献   

10.
《Marine Micropaleontology》1996,28(2):171-197
A census count of Rose Bengal stained benthic foraminifera from the surface area on top of a 2 to 6 cm thick ashfall layer at three deep water stations along the western margin of the Philippines exhibits a unique assemblage composition of benthic foraminifera. The total number of benthic foraminifera is low and the ratio of living individuals to empty tests is high. Specific diversity is low, with a significant dominance of infaunal morphotypes including species of the genus Reophax (R. scorpiurus, R. bilocularis and R. dentaliniformis), which are regarded as successful recolonizers. Assemblages below the ash layers are diverse and contain many epifaunal suspension-feeding agglutinated and calcareous foraminifera. The 1991 Mt. Pinatubo eruption caused mass mortality of benthic foraminifera in a vast area of the eastern South China Sea followed by step-wise recolonization of the ash substrate. Three years after the eruption, the benthic foraminiferal community structure is still far from recovery to background levels.  相似文献   

11.
This study is based on Cenomanian to lower Turonian sediments of Ocean Drilling Program (ODP) Sites 1258, 1259, 1260, and 1261 from the Demerara Rise (Leg 207, western tropical Atlantic, off Suriname) that are oriented along a paleodepth transect. Studied sediments include the Cenomanian/Turonian Boundary Event (CTBE) or Oceanic Anoxic Event 2 (OAE 2) and consist of laminated black shales with TOC values between 5% and 10% below and above OAE 2 and up to 29% within the OAE 2 interval. Benthic foraminiferal assemblages in this eutrophic environment are generally characterized by low diversities and strong fluctuations of abundances, indicating oxygen depletion and high organic matter fluxes. Dominant taxa at all sites are Bolivina anambra, Gavelinella dakotensis, Tappanina sp., Praebulimina prolixa, and Neobulimina albertensis. Based on the positive stable carbon isotope excursion characteristics of OAE 2 we subdivided the studied successions into three intervals: (1) the interval below OAE 2; (2) the carbon isotope excursion reflecting OAE 2; and (3) the interval above OAE 2. In the bathymetrically shallower Sites 1260 and 1261 benthic foraminiferal assemblages indicate anoxic to sometimes slightly dysoxic bottom-water conditions below the OAE 2 interval. The bathymetrically deepest Site 1258, in contrast, reflects more oxygenated bottom waters with an almost continuous occurrence of benthic foraminifera. It is therefore suggested that the shallower sites were located within the oxygen minimum zone (OMZ), whereas Site 1258 was below the OMZ. During OAE 2 anoxic conditions prevailed at the shallower sites. At Site 1258 benthic foraminifera indicate severe dysoxic but not anoxic conditions. This pattern is proposed to reflect a strengthening of the OMZ possibly related to increased primary production during OAE 2. A short-term repopulation event of benthic foraminifera in the lower third of the OAE 2 interval was observed at all sites, reflecting a brief bottom-water oxygenation event. This short-lived event parallels a surface-water cooling and is probably equivalent to the “Plenus Cool Event” in Europe and the “benthonic zone” in the U.S. Western Interior. The benthic foraminifera of a ~0.5 Ma interval following OAE 2 still indicate oxygen depletion of bottom waters. Subsequently, however, a strong increase in benthic foraminiferal abundance and diversity reflects better oxygenation of the bottom-water masses, probably related to a weakening of the OMZ due to decreasing organic matter flux.  相似文献   

12.
Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal–upper abyssal (1500–2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time.At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms.The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers (“Strangelove Ocean Model”) or to the collapse of the biotic pump (“Living Ocean Model”).  相似文献   

13.
This paper documents changes in benthic foraminiferal assemblages compared with high resolution ammonite biozonation along the lower Toarcian to upper Toarcian marine succession of Southern Beaujolais in southeastern France. Eight ammonite and three benthic foraminiferal zones including five subzones are distinguished based on the occurrence of twelve foraminiferal events. Each benthic foraminiferal subzone is characterized by its taxonomic and morphogroup composition, which represents the paleoecological response of these taxa and morphotypes of benthic foraminifera in the Early Jurassic and early Middle Jurassic. Major changes in abundance and diversity occur at the end of the Toarcian Oceanic Anoxic Event (T-OAE) and near the Early-Middle Jurassic transition. The low-abundance foraminiferal assemblages recorded in the Serpentinus ammonite Zone are interpreted as reflecting adverse environmental conditions after the T-OAE. The later recovery and development of the foraminiferal assemblages is documented in the Bifrons up to the Aalensis zones and is attributed to improved bottom water oxygenation. Common occurrences of agglutinated foraminifera represented mostly by Trochammina pulchra Ziegler in the Dispensum Zone point to an influx of cooler water masses during the late Toarcian. The morphogroup analysis carried out on the foraminifera and their paleoecological interpretations shed light on the changes in the stratigraphic record at the end of the T-OAE up to the Toarcian/Aalenian boundary.  相似文献   

14.
Accumulation rates of individual species (SpecAR) and relative abundances (percentages) of benthic foraminifera of an AMS 14C-dated high resolution sediment core from the Norwegian Seas (water depth: 2707 m) provide a record of the faunal fluctuations from the last glacial maximum across the Weichselian deglaciation to the Holocene. During glacial times, the total foraminifera accumulation remains at a very low level (< 100 specimens cm−2 kyr−1) and is dominated by two endofaunal species: Oridorsalis umbonatus (Reuss) and Siphotextularia rolshauseni (Phleger and Parker) and reworked specimens of the genus Elphidium. The following deglaciation period exhibits an increase of the AR of the total fauna at 14 kyr B.P. The species distribution is marked by the last appearance of S. rolshauseni and the first postglacial appearance of suspension feeding Cibicidoides wuellerstorfi (Schwager) 13 kyr B.P. The absolute maximum of benthic foraminiferal AR (2750 spec cm−2 kyr−1 occurred near 9 kyr B.P. at the end of the deglaciation. This maximum also marks the re-appearance of the agglutinating species Cribrostomoides subglobosus (Sars). The post-glacial interval is characterized by a twofold reduction of the total accumulation of benthic foraminifera. The species distribution shows two new species: Ammobaculites agglutinans (d'Orbigny, at 6 kyr B.P.) and Epistominella exigua (Brady, at 3.5 kyr B.P.). The total AR indicates benthic activity during glacial times was at a low level. It was significantly higher during the Holocene with an abrupt increase of benthic foraminiferal abundance from 10 to 9 kyr B.P. The Stepwise re-invasion into the postglacial deep-sea environment maybe related to specific habitat preference.  相似文献   

15.
The oxygen- and carbon-isotope compositions of planktic and benthic foraminifera and calcareous nannofossils from Middle Oligocene-Early Miocene Equatorial Atlantic sediments (DSDP Site 354) indicate two important paleoceanographic changes, in the Late Oligocene (foraminiferal Zone P.21) and in the Early Miocene (foraminiferal Zone N.5). The first change, reflected by a δ18O increase of 1.45‰ inGlobigerina venezuelana, affected only intermediate pelagic and not surface, deep or bottom waters. The second change affected surface and intermediate waters, whereas deep and bottom waters showed only minor fluctuations. In the case of the former the isotope effect of the moderate ice accumulation on the Antarctic continent is amplified in the Equatorial Atlantic by changes in the circulation pattern. The latter paleoceanographic change, reflected by a significant increase in18O in both planktic and benthic forms (about 1.0‰ and 0.5‰, respectively), may have been caused by ice volume increase and temperature decrease. Both oxygen- and carbon-isotope compositions indicate a marked depth-habitat stratification for planktic foraminifera and calcareous nannofossils. Three different dwelling groups are recognized: shallowGlobigerinoides, Globoquadrina dehiscens, Globorotalia mayeri and nannofossils; intermediateGlobigerina venezuelana; and deepCatapsydrax dissimilis. The comparison of foraminifera and calcareous nannofossils suggests that the isotopic compositions of nannofossils are generally controlled by the same parameters which control the isotopic composition of shallow-dwelling foraminifera, but the former are more enriched in18O.  相似文献   

16.
A major change in benthic foraminiferal assemblages occurred in the deep Bay of Biscay (> 3 km water; DSDP Sites 119, and Site 400A) between early middle Eocene and earliest Oligocene. Predominant Eocene deep-sea taxa (Nuttallides truempyi, Clinapertina spp., Abyssamina spp.) and associated rarer species became extinct in this interval. These extinctions were followed by an increase in abundance of bathymetrically wide-ranging and stratigraphically long-ranging taxa: Globocassidulina subglobosa, Oridorsalis spp., Gyroidinoides spp., and the Cibicidoides ungerianus plexus. The extinctions cannot be dated precisely from the stratigraphic record recovered to date in the Bay of Biscay; however, the replacement of the N. truempyi-dominated assemblage has been noted previously in the deep South Atlantic/Caribbean as occurring near the middle/late Eocene boundary. Other than the decrease in abundance and extinction of N. truempyi, no major abundance changes are noted within the Eocene at the shallower Site 401 (~ 2 km water) in the Bay of Biscay. During the Oligocene, Nuttallides umbonifera replaced the Eocene species N. truempyi as the predominant deep-sea benthic foraminifera, reaching peak abundance in the middle Oligocene at Sites 119 and Site 400A. In the modern oceans, the abundance ot N. umbonifera is positively correlated with increased corrosiveness of bottom water, while at Site 119 the abundance of Nuttallides spp. is negatively correlated with δ 13C values in benthic foraminifera. As lower δ 13C values are often associated with older water masses, large numbers of Nuttallides spp. are thought to reflect older, and more corrosive bottom water. The faunal data and oxygen and carbon isotopic data are compared with a circulation model derived from North Atlantic seismic stratigraphic studies to show that old, warm, corrosive, and sluggish Eocene bottom water was replaced by younger, colder, less corrosive, more vigorously circulating bottom water of northern origin by the early Oligocene. Faunal and isotopic data suggest that bottom water became older and more corrosive again in the middle Oligocene, reflecting a reduction in circulation that can also be inferred from the seismic record in the nearby Rockall Plateau region.  相似文献   

17.
Oxygen respiration rates of benthic foraminifera are still badly known, mainly because they are difficult to measure. Oxygen respiration rates of seventeen species of benthic foraminifera were measured using microelectrodes and calculated on the basis of the oxygen fluxes measured in the vicinity of the foraminiferal specimens. The results show a wide range of oxygen respiration rates for the different species (from 0.09 to 5.27 nl cell−1 h−1) and a clear correlation with foraminiferal biovolume showed by the power law relationship: R = 3.98 10−3 BioVol0.88 where the oxygen respiration rate (R) is expressed in nl O2 h−1 and in μm3 biovolume (BioVol) (n = 44, R2 = 0.72, F = 114, p < 0.0001). The results expressed per biovolume unit (1.82 to 15.7 nl O2 10−8 μm−3 h−1) allow us to compare our data with the previous published data showing similar ranges. A comparison with available data for other microbenthos groups (nematodes, copepods, ostracods, ciliates and flagellates) suggests that benthic foraminifera have a lower oxygen respiration rates per unit biovolume. The total contribution of benthic foraminifera to the aerobic mineralisation of organic matter is estimated for the studied areas. The results suggest that benthic foraminifera play only a minor role (0.5 to 2.5%) in continental shelf environments, which strongly contrasts with their strong contribution to anaerobic organic matter mineralisation, by denitrification, in the same areas.  相似文献   

18.
Detailed analyses of the benthic foraminiferal assemblages extracted with the cold acetolyse method together with high resolution geochemical and mineralogical investigations across the Paleocene/Eocene (P/E) boundary of the classical succession at Contessa Road (western Tethys), allowed to recognize and document the Paleocene–Eocene Thermal Maximum (PETM) interval, the position of the Benthic Extinction Event (BEE) and the early recovery of benthic faunas in the aftermath of benthic foraminiferal extinction. The stratigraphical interval spanning the P/E boundary consists of dominantly pelagic limestones and two prominent marly beds. Benthic foraminifera indicate that these sediments were deposited at lower bathyal depth, not deeper than 1000–1500 m. The Carbon Isotope Excursion (CIE) interval is characterized by high barite abundance with a peak at the base of the same stratigraphic interval, indicating a complete, although condensed record of the early CIE. A succession of events and changes in the taxonomic structure of benthic foraminifera has been recognized that may be of use for supra-regional stratigraphic correlation across the P/E boundary interval. The composition of the benthic foraminiferal assemblages, dominated by infaunal taxa, indicates mesotrophic and changing conditions on the sea floor during the last  45 kyr of the Paleocene. The BEE occurs at the base of the CIE within the lower marly bed and it is recorded by the extinction of several deep-water cosmopolitan taxa. Then, the lysocline/CCD rose and severe carbonate dissolution occurred. Preservation deteriorated, the faunal density and simple diversity dropped to minimum values and a peak of Glomospira spp. has been observed. Stress-tolerant and opportunistic groups, represented mainly by bi-and triserial taxa, dominate the low-diversity post-extinction assemblages, indicating a benthic foraminiferal recovery under environmental unstable conditions, probably within a context of sustained food transfer to the bottom. A three-phase pattern of faunal recovery is recognizable. At first the lysocline/CCD started to descend and then recovered. Small-sized “Bulimina”, Oridorsalis umbonatus, and Tappanina selmensis rapidly repopulated the severely stressed environment. Later on, Siphogenerinoides brevispinosa massively returns, dominating the assemblage together with other buliminids, Nuttallides truempyi, and Anomalinoides sp.1. Finally, a marked drop in abundance of S. brevispinosa is followed by a bloom of the opportunistic and recolonizer agglutinated Pseudobolivina that, for the first time, is recorded within the main CIE. A second interval of dissolution, but less severe than the previous one, has been recognized within the upper marly bed (uppermost part of the main CIE interval) and it is interpreted as a renewed, less pronounced shoaling of the lysocline/CCD that interrupted the recovery of benthic faunas. This further rise likely represents a response to persistent instability of ocean geochemistry in this sector of the Tethys before the end of the CIE. In the CIE recovery and post CIE intervals, the composition of the benthic foraminiferal assemblages suggests mesotrophic and unstable conditions at the sea floor. According to the geochemical proxy for redox conditions, the deposition of the PETM sediments at Contessa Road occurred in well-oxygenated waters, leading out a widespread oxygen depletion as major cause of the BEE. Changing oceanic productivity, carbonate corrosivity and global warming appear to have played a much more important role in the major benthic foraminiferal extinction at the P/E boundary.  相似文献   

19.
Cretaceous and early Paleocene benthic foraminifera were studied from one section along the western Gaj River, southern Balochistan, Pakistan, to reconstruct the paleoenvironment of the Tethys Sea during the Indian-Asian contact. We recognize three lithostratigraphic units in ascending order: the Mughal Kot Formation, the Pab Sandstone, and the Jamburo Group. Both the Maastrichtian Mughal Kot Formation, which consists of shale with grey marly limestone, and the Maastrichtian Pab Sandstone, which consists of quartzose sandstone, indicate an open ocean environment as they have diversified planktic and benthic foraminiferal assemblages. The Maastrichtian-Paleocene Jamburo Group, consisting of dark grey, calcareous shale and marlstone with some sulfide grains, is characterized by low diversities of benthic assemblages. The change to the lower diversities may be associated with the development of poor circulation of deeper water that was caused by narrowing of the Tethys Sea.The Trochammina spp. Assemblage from the Jamburo Group, which can be correlated with flysch-type agglutinated foraminiferal assemblages, has a low benthic species diversity, indicating an unfavorable condition for calcareous foraminifera because of the development of oxygen-depleted water. The absolute abundance of agglutinated specimens shows a remarkable change from low numbers in the Maastrichtian to high ones in the Paleocene. The benthic foraminiferal evidence supports the hypothesis that the collision of the Asian and Indian plates occurred near the end of the Cretaceous.  相似文献   

20.
Recent benthic foraminifera (> 125 μm) were investigated from multicorer samples on a latitudinal transect of 20 stations between 1°N and 32°S along the upper slope off West Africa. Samples were selected from a narrow water depth interval, between 1200 and 1500 m, so that changes in water masses are minimized, but changes in surface productivity are important and the only significant environmental variable. Live (Rose Bengal stained) benthic foraminifera were counted from the surface sediment down to a maximum of 12 cm. Dead foraminifera were investigated in the top 5 cm of the sediment only. Five live and five dead benthic foraminiferal assemblages were identified using Q-mode principal component analysis, matching distinct primary productivity provinces, characterized by different systems of seasonal and permanent upwelling. Differences in seasonality, quantity, and quality of food supply are the main controlling parameters on species composition and distribution of the benthic foraminiferal faunas.To test the sensitivity of foraminiferal studies based on the uppermost centimeter of sediment only, a comparative Q-mode principal component analysis was conducted on live and dead foraminiferal data from the top 1 cm of sediment. It has been demonstrated that, on the upper slope off West Africa, most of the environmental signals as recorded by species composition and distribution of the “total” live and dead assemblages, i.e., including live and dead foraminifera from the surface sediment down to 12 cm and 5 cm, respectively, can be extracted from the assemblages in the top centimeter of sediment only. On the contrary, subsurface abundance maxima of live foraminifera and dissolution of empty tests strongly bias quantitative approaches based on the calculation of standing stocks and foraminiferal numbers in the topmost centimeter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号