首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reducing obesity requires an elevation of energy expenditure and/or a suppression of food intake. Here we show that enhancing hepatic glycolysis reduces body weight and adiposity in obese mice. Overexpression of glucokinase or 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is used to increase hepatic glycolysis. Either of the two treatments produces similar increases in rates of fatty acid oxidation in extrahepatic tissues, i.e., skeletal muscle, leading to an elevation of energy expenditure. However, only 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase overexpression causes a suppression of food intake and a decrease in hypothalamic neuropeptide Y expression, contributing to a more pronounced reduction of body weight with this treatment. Furthermore, the two treatments cause differential lipid profiles due to opposite effects on hepatic lipogenesis, associated with distinct phosphorylation states of carbohydrate response element binding protein and AMP-activated protein kinase. The step at which hepatic glycolysis is enhanced dramatically influences overall whole-body energy balance and lipid profiles.  相似文献   

3.
Exposure to hypoxia induces anorexia in humans and rodents, but the role of leptin remains under discussion and that of orexigenic and anorexigenic hypothalamic neuropeptides remains unknown. The present study was designed to address this issue by using obese (Lepr(fa)/Lepr(fa)) Zucker rats, a rat model of genetic leptin receptor deficiency. Homozygous lean (Lepr(FA)/Lepr(FA)) and obese (Lepr(fa)/Lepr(fa)) rats were randomly assigned to two groups, either kept at ambient pressure or exposed to hypobaric hypoxia for 1, 2, or 4 days (barometric pressure, 505 hPa). Food intake and body weight were recorded throughout the experiment. The expression of leptin and vascular endothelial growth factor (VEGF) genes was studied in adipose tissue with real-time quantitative PCR and that of selected orexigenic and anorexigenic neuropeptides was measured in the hypothalamus. Lean and obese rats exhibited a similar hypophagia (38 and 67% of initial values at day 1, respectively, P < 0.01) and initial decrease in body weight during hypoxia exposure. Hypoxia led to increased plasma leptin levels only in obese rats. This resulted from increased leptin gene expression in adipose tissue in response to hypoxia, in association with enhanced VEGF gene expression. Increased hypothalamic neuropeptide Y levels in lean rats 2 days after hypoxia exposure contributed to accounting for the enhanced food consumption. No significant changes occurred in the expression of other hypothalamic neuropeptides involved in the control of food intake. This study demonstrates unequivocally that altitude-induced anorexia cannot be ascribed to anorectic signals triggered by enhanced leptin production or alterations of hypothalamic neuropeptides involved in anabolic or catabolic pathways.  相似文献   

4.
NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese β-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in β-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.  相似文献   

5.
We have investigated whether GH treatment influences the expression of UCP1, 2 and 3 mRNA in a KK-Ay obese mouse model. KK-Ay mice (n = 10) and C57Bl/6J control mice (n = 10) were injected subcutaneously with human GH (1.0 mg/kg/day and 3.5 mg/kg/day) for 10 days, and compared with mice injected with physical saline. The KK-Ay obese mice weighed significantly less (p < 0.01 : 1.0 mg/kg/day, p < 0.05 : 3.5 mg/kg/day) and had smaller inguinal subcutaneous and perimetric white adipose tissue (WAT) pads (p < 0.05 : 3.5 mg/kg/day), but increased skeletal muscle weight (p < 0.05). The brown adipose tissue (BAT) weight did not change significantly. Not only plasma free fatty acid and glucose levels but also plasma insulin levels decreased. The reduced HOMA-IR (homeostasis model assessment-insulin resistance) values suggested that insulin resistance was improved by GH treatment. UCP1 mRNA levels increased after the 3.5 mg GH treatment by 2.8-fold (p < 0.01 vs. saline controls) and 2.0-fold (p < 0.05 vs. 1 mg GH treatment) in BAT, and by 6.0-fold in subcutaneous WAT (p < 0.05 vs. controls). UCP2 mRNA levels increased 2.2-fold (p < 0.05 vs. control) and 2.1-fold (p < 0.05 vs. 1 mg GH treatment) in BAT, and 2.0-fold (p < 0.05 vs. controls) in skeletal muscle. One mg GH administration also stimulated UCP1 mRNA expression by 2.5-fold (p < 0.05 vs. controls) and UCP3 mRNA expression by 2.8-fold (p < 0.05 vs. controls) in the muscle. On the other hand, lean mice showed no significant difference in body composition or plasma parameters. UCP1, 2 and 3 mRNA expression in lean mice did not show any significant change after treatment with GH. We conclude that GH treatment increased mRNA levels for not only UCP1, but also UCP 2 and 3 in BAT, WAT and muscle in a KK-Ay obese mouse model. These findings suggest that GH-induced thermogenesis may contribute to the reduction in WAT and energy expenditure.  相似文献   

6.
Peripheral administration of baclofen significantly reduced food intake and body weight increase in both diabetic (db/db) and diet-induced obese mice for 5 weeks, whereas it had no significant effects on energy balance in their lean control mice. Despite the decreased body weight, neuropeptide Y expression in the arcuate nucleus was significantly decreased, whereas pro-opiomelanocortin expression was significantly increased by baclofen treatment. These data demonstrate that the inhibitory effects of baclofen on body weight in the obese mice were mediated via the arcuate nucleus at least partially, and suggest that GABA(B) agonists could be a new therapeutic reagent for obesity.  相似文献   

7.

Background

Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear.

Methodology/Principal Findings

We thus generated two conditional knockout mouse models, Y2lox/lox and NPYCre/+;Y2lox/lox, in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver cartinine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons.

Conclusions/Significance

Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.  相似文献   

8.
Hormone-sensitive lipase (HSL) plays a crucial role in the hydrolysis of triacylglycerol and cholesteryl ester in various tissues including adipose tissues. To explore the role of HSL in the metabolism of fat and carbohydrate, we have generated mice lacking both leptin and HSL (Lep(ob/ob)/HSL(-/-)) by cross-breeding HSL(-/-) mice with genetically obese Lep(ob/ob) mice. Unexpectedly, Lep(ob/ob)/HSL(-/-) mice ate less food, gained less weight, and had lower adiposity than Lep(ob/ob)/HSL(+/+) mice. Lep(ob/ob)/HSL(-/-) mice had massive accumulation of preadipocytes in white adipose tissues with increased expression of preadipocyte-specific genes (CAAT/enhancer-binding protein beta and adipose differentiation-related protein) and decreased expression of genes characteristic of mature adipocytes (CCAAT/enhancer-binding protein alpha, peroxisome proliferator activator receptor gamma, and adipocyte determination and differentiation factor 1/sterol regulatory element-binding protein-1). Consistent with the reduced food intake, hypothalamic expression of neuropeptide Y and agouti-related peptide was decreased. Since HSL is expressed in hypothalamus, we speculate that defective generation of free fatty acids in the hypothalamus due to the absence of HSL mediates the altered expression of these orexigenic neuropeptides. Thus, deficiency of both leptin and HSL has unmasked novel roles of HSL in adipogenesis as well as in feeding behavior.  相似文献   

9.
Ghrelin is a gastric peptide that regulates energy homeostasis. Angiotensin II (Ang II) is known to induce body weight loss and skeletal muscle catabolism through the ubiquitin-proteasome pathway. In this study, we investigated the effects of ghrelin on body weight and muscle catabolism in mice treated with Ang II. The continuous subcutaneous administration of Ang II to mice for 6days resulted in cardiac hypertrophy and significant decreases in body weight gain, food intake, food efficiency, lean mass, and fat mass. In the gastrocnemius muscles of Ang II-treated mice, the levels of insulin-like growth factor 1 (IGF-1) were decreased, and the levels of mRNA expression of catabolic factors were increased. Although the repeated subcutaneous injections of ghrelin (1.0mg/kg, twice daily for 5days) did not affect cardiac hypertrophy, they resulted in significant body weight gains and improved food efficiencies and tended to increase both lean and fat mass in Ang II-treated mice. Ghrelin also ameliorated the decreased IGF-1 levels and the increased mRNA expression levels of catabolic factors in the skeletal muscle. IGF-1 mRNA levels in the skeletal muscle significantly decreased 24h after Ang II infusion, and this was reversed by two subcutaneous injections of ghrelin. In C2C12-derived myocytes, the dexamethasone-induced mRNA expression of atrogin-1 was decreased by IGF-1 but not by ghrelin. In conclusion, we demonstrated that ghrelin improved body weight loss and skeletal muscle catabolism in mice treated with Ang II, possibly through the early restoration of IGF-1 mRNA in the skeletal muscle and the amelioration of nutritional status.  相似文献   

10.
Treatment of newborn mice with monosodium glutamate (MSG) is neurotoxic for hypothalamic arcuate nucleus (ARC) and causes obesity. In the MSG-treated 16-week-old NMRI mice, we detected specific ablation of ARC neuronal cells, 8 times higher fat to body mass ratio but unchanged body mass compared to controls, advanced hyperglycemia and hyperinsulinemia--both more pronounced in males, and hyperleptinemia--more severe in females. After fasting, the MSG-treated mice showed attenuated food intake compared to controls. Cholecystokinin octapeptide, which decreased food intake in a dose-dependent manner in 24 h fasted controls, did not significantly affect food intake in the MSG-treated animals. We propose that the obesity-related changes in the feeding behavior of the MSG-treated obese mice were the result of missing leptin and insulin receptors in ARC and consequent altered neuropeptide signaling. This makes the MSG model suitable for clarifying generally the central control of food intake.  相似文献   

11.
To examine the role of the brain stem melanocortin system in long-term energy regulation, we assessed the effects of overproduction of proopiomelanocortin (POMC) in the caudal brain stem of F344xBN rats with adult-onset obesity. Recombinant adeno-associated viral vector encoding POMC gene was delivered to the nucleus of solitary tract (NTS) in the hindbrain, and food intake, body weight, glucose and fat metabolism, brown adipose tissue thermogenesis, and mRNA levels of neuropeptides and melanocortin receptors were assessed. POMC delivery resulted in sustained reduction in food intake and body weight over 42 days and improved insulin sensitivity. At death, in recombinant adeno-associated viral vector-POMC-treated rats vs. control rats, alpha-melanocyte-stimulating hormone in NTS increased nearly 21-fold, whereas hypothalamic alpha-melanocyte-stimulating hormone remained unchanged. Visceral adiposity decreased by 37%; tissue triglyceride content diminished by 26% and 47% in liver and muscle, respectively; serum triglyceride and nonesterified fatty acids were reduced by 35% and 34%, respectively; phosphorylation of acetyl-CoA carboxylase was elevated by 63% in soleus muscle; brown adipose tissue uncoupling protein 1 increased by 30%; and melanocortin 3 receptor expression declined by 60%, whereas neuropeptide Y, agouti-related protein, and MC4 receptor mRNA levels were unchanged in the NTS. In conclusion, POMC overexpression in the NTS produces a characteristic unabated hypophagia that is uniquely different from the anorexic tachyphylaxis following POMC overexpression in the hypothalamus. The sustained anorectic response may result from absence of compensatory elements in the NTS, such as increased agouti-related protein expression, suggesting melanocortin activation of the brain stem may be a viable strategy to alleviate obesity.  相似文献   

12.
Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-alpha) production from adipose tissue is elevated in obese animal models and in obese humans. It plays an important role in the induction of insulin resistance in experimental animals. In this study, we examined hypothalamic tissue expression of TNF-alpha and its receptors and TNF-alpha expression of adipose tissue in lean C57BLKSJ+/+ and obese polygenic New Zealand obese (NZO) mice. Obese animals exhibited hyperglycemia, hyperinsulinemia, hypertriglyceridemia, and hypercholesterinemia. Using RT-PCR, we observed increased expression (2.4-fold) of TNF receptor 2 (p75) in the hypothalamus of obese mice. TNF-alpha expression in adipose tissue of obese mice was eight times higher than in controls. TNF-alpha and TNF receptor 1 (p55) expression in hypothalamic tissue was similar in obese and lean animals. These results suggest that the hypothalamic TNF receptor 2 (p75) might play a role in obesity by modulating the actions of TNF-alpha in conditions of leptin resistance.  相似文献   

13.
14.
1. The influence of dietary sorbose on food intake and fatty acid synthesis of the liver and epididymal white adipose tissue (EWAT) was investigated in gold thioglucose (GTG)-injected obese mice from 12 to 14 weeks of age. 2. Sorbose was supplemented to a semi-purified diet at a level of 200 g/kg diet at the expense of sucrose. 3. On the last day of the experiment, fatty acids synthesis in the liver and EWAT was measured using an i.p. injection [1-14C]sodium acetate. 4. The decreases in body weight and food intake by dietary sorbose in GTG-injected obese mice were greater than those in control mice. 5. Lipid content and fatty acid synthesis in the liver and EWAT of control mice were not influenced by dietary sorbose. 6. In GTG-injected obese mice, the reduction of food intake by dietary sorbose suppressed fatty acid synthesis and lipid deposition in both liver and EWAT.  相似文献   

15.
Energy homeostasis and feeding are regulated by the central nervous system. C75, a fatty acid synthase (FAS) inhibitor, causes weight loss and anorexia, implying a novel central nervous system pathway(s) for sensing energy balance. AMP-activated protein kinase (AMPK), a sensor of peripheral energy balance, is phosphorylated and activated when energy sources are low. Here, we identify a role for hypothalamic AMPK in the regulation of feeding behavior and in mediating the anorexic effects of C75. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, increased food intake, whereas compound C, an inhibitor of AMPK, decreased food intake. C75 rapidly reduced the level of the phosphorylated AMPK alpha subunit (pAMPKalpha) in the hypothalamus, even in fasted mice that had elevated hypothalamic pAMPKalpha levels. Furthermore, AICAR reversed both the C75-induced anorexia and the decrease in hypothalamic pAMPKalpha levels. C75 elevated hypothalamic neuronal ATP levels, which may contribute to the mechanism by which C75 decreased AMPK activity. C75 reduced the levels of pAMPKalpha and phosphorylated cAMP response element-binding protein (pCREB) in the arcuate nucleus neurons of the hypothalamus, suggesting a mechanism for the reduction in NPY expression seen with C75 treatment. These data indicate that modulation of FAS activity in the hypothalamus can alter energy perception via AMPK, which functions as a physiological energy sensor in the hypothalamus.  相似文献   

16.
17.
18.
Impaired activity of the uncoupling protein (UCP) family has been proposed to promote obesity development. The present study examined differences in UCP responses to cold exposure between leptin-resistance obese (db/db) mice and their lean (C57Ksj) littermates. Basal UCP1 and UCP3 mRNA expression in brown adipose tissue was lower in obese mice compared with lean mice, but UCP2 expression in white adipose tissue (WAT) was higher. Basal skeletal muscle UCP3 did not change remarkably. The UCP family mRNAs, which were upregulated 12 and 24 h after cold exposure (4 degrees C), were returned to prior levels 12 h after rewarming exposure (21 degrees C) in lean mice. The accelerating effects of cold exposure on the UCP family were impaired in db/db obese mice. Together with these changes, WAT lipoprotein lipase mRNA was downregulated, and the concentration of serum free fatty acid was increased in response to cold exposure in the lean mice but not in db/db obese littermates. The impaired function of the UCP family and diminished lipolysis in response to cold exposure indicate that the reduced lipolytic activity may contribute to the inactivation of the UCP family in db/db obese mice.  相似文献   

19.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号