首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang  Fen  Wei  Dan  Suo  Yuanzhen  Zhu  Xi  Yuan  Yan  Gao  Wenyuan  Jiang  Hua  Wei  Xunbin  Chen  Tong 《Molecular biology reports》2020,47(1):1-10

Bone marrow mononuclear cells (BM-MNCs) transplantation has evolved as a promising experimental treatment in various regenerative therapy fields, especially in clinical hematopoietic stem cells transplantation (HSCT). In vitro methods have mainly been used to study the pre-clinical kinetics of BM-MNCs in mice after transplantation. And it is difficult to monitor the dynamic homing of BM-MNCs in living mice. The present study obtained the kinetics of transplanted BM-MNCs in the peripheral blood (PB) and the dynamic homing of BM-MNCs in the BM in living mice by a combination of in vivo flow cytometry (IVFC) and calvarium intravital microscopy. We found out that BM-MNCs were cleared rapidly from the PB and mainly localized to various hematopoietic tissues after transplantation. The number of BM-MNCs in the PB decreased over time accompanied by an increase in the BM indeed after transplantation. In addition, a lower number of BM-MNCs were found home to calvaria than long bone, probably indicating long bone marrow might also be an important hematopoietic organ. Clinical studies will benefit from non-invasive measurements to monitor the dynamic homing of transplanted cells. Our pre-clinical kinetics of BM-MNCs in living mice will have important clinical guiding significance in HSCT and other regenerative therapy fields.

  相似文献   

2.
In utero hematopoietic stem cell transplantation (IUHCT) is a potential therapeutic alternative to postnatal hematopoietic stem cell transplantation (HSCT) for congenital hematologic disorders that can be diagnosed early in gestation and can be cured by HSCT. The rationale is to take advantage of normal events during hematopoietic and immunologic ontogeny to facilitate allogeneic hematopoietic engraftment. Although the rationale remains compelling, IUHCT has not yet achieved its clinical potential. This review will discuss recent experimental progress toward overcoming the barriers to allogeneic engraftment and new therapeutic strategies that may hasten clinical application.  相似文献   

3.
Impaired homing and delayed recovery upon hematopoietic stem cell transplantation (HSCT) with hematopoietic stem cells (HSC) derived from umbilical cord blood (UCB) is a major problem. Tracking transplanted cells in vivo will be helpful to detect impaired homing at an early stage and allows early interventions to improve engraftment and outcome after transplantation. In this study, we show sufficient intracellular labeling of UCB-derived CD34+ cells, with 19F-containing PLGA nanoparticles which were detectable with both flow cytometry and magnetic resonance spectroscopy (MRS). In addition, labeled CD34+ cells maintain their capacity to proliferate and differentiate, which is pivotal for successful engraftment after transplantation in vivo. These results set the stage for in vivo tracking experiments, through which the homing efficiency of transplanted cells can be studied.  相似文献   

4.
Within the contemporary multitude of complex methods used in clinical flow cytometry, very few techniques exist which can be described as disease-specific diagnostic tests. Detection of glycophosphatidylinositol (GPI)-linked antigens on hematopoietic cells using monoclonal antibodies and flow cytometry forms the basis of a specific diagnostic test for paroxysmal nocturnal hemoglobinuria (PNH). Absent or markedly diminished expression of GPI-linked antigens is, in the appropriate clinical setting, specific for all patients with PNH. Clinically, PNH is a syndrome characterized by bone marrow failure, acquired hemolytic anemia, and a thrombotic tendency. The molecular genetic lesion responsible for this condition is a somatic mutation of the X-linked pig-a gene within a multipotent hematopoietic stem cell. Due to its rarity, delay in diagnosis is not uncommon for patients with PNH. Once a definitive diagnosis is established, this can make a considerable impact on patient management and prognosis. In this article, we review the complimentary roles that molecular biology and flow cytometry have played in unraveling the genotypic and phenotypic aspects of this unique condition.  相似文献   

5.
Immunoablative therapy and hematopoietic stem cell transplantation (HSCT) is an intensive treatment modality aimed at 'resetting' the dysregulated immune system of a patient with immunoablative therapy and allow outgrowth of a nonautogressive immune system from reinfused hematopoietic stem cells, either from the patient (autologous HSCT) or a healthy donor (allogeneic HSCT). HSCT has been shown to induce profound alterations of the immune system affecting B and T cells, monocytes, and natural killer and dendritic cells, resulting in elimination of autoantibody-producing plasma cells and in induction of regulatory T cells. Most of the available data have been collected through retrospective cohort analyses of autologous HSCT, case series, and translational studies in patients with refractory autoimmune diseases. Long-term and marked improvements of disease activity have been observed, notably in systemic sclerosis, systemic lupus erythematosus, and juvenile idiopathic arthritis, and treatment-related morbidity and mortality have improved due to better patient selection and modifications of transplant regimens. Treatment-related mortality has decreased to approximately 7%. Prospective, randomised, controlled clinical trials are ongoing or planned in systemic sclerosis, systemic lupus erythematosus, and several nonrheumatological conditions.  相似文献   

6.
Pulmonary infections often complicate hematopoietic stem cell transplantation (HSCT) outcome. Uncommon aetiologies, like Mycobacterium tuberculosis, should be considered when the clinical conditions do not fully improve with standard antimicrobial therapy and microbiological evaluations are repeatedly negative for bacteria and fungi. We describe an interesting pediatric case of miliary lung tuberculosis after HSCT, which was successfully treated after administering the appropriate therapy.  相似文献   

7.
Regeneration after hematopoietic stem cell transplantation (HSCT) depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC) after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34(+) cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT) significantly enhanced proliferation, maintained primitive immunophenotype (CD34(+), CD133(+), CD45(-)) for more cell divisions and increased colony forming units (CFU) as well as the number of cobblestone area-forming cells (CAFC). The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT). Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1) increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool.  相似文献   

8.
Hematologic malignancies comprise a considerable part of cancers with high mortality at any age. Since the introduction of hematopoietic stem cell transplantation (HSCT), the overall survival of patients dramatically increased. The main goal of HSCT is the induction of a graft-versus-leukemia effect to eradicate the residual cancer cells and also reconstitute a healthy immune system for patients. However, relapse is a nettlesome challenge of HSCT. Like many other tumors, hematologic cancer cells induce immune exhaustion leading to immune escape and relapses after HSCT. Besides malignant cells, inhibitory cells such as tumor-associated macrophages and myeloid-derived suppressor cells express various inhibitory receptors capable of inducing exhaustion in immune cells, especially T and natural killer cells. The significance of immune checkpoint blocking in tumor regression in clinical trials led to the 2018 Nobel Prize in Physiology/Medicine. Here, we reviewed the clinical roles of immune checkpoints in hematologic malignancies and post-HSCT relapses.  相似文献   

9.
Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for many hematologic malignancies and inherited disorders of the hematopoietic system. Ex vivo T-cell depletion (TCD) of the graft and post-transplantation immunosuppression efficiently prevents the development of GvHD in no- MHC-identical settings. However, the consequence of these non-specific strategies is a long-lasting immunodeficiency associated with increased incidence of disease relapse, graft rejection and reactivation of viral infections. Donor lymphocyte infusion, which is used for treating leukemic relapse after allogeneic HSCT, can result in severe GvHD. Several strategies are being optimized specifically to inactivate anti-host T cells while preserving anti-leukemic or anti-microbial immunocompetence. Based on the ex vivo or in vivo elimination of anti-host T cells, or on the modulation of their anti-host activity, these approaches, which have been explored extensively in pre-clinical studies and tested in some preliminary clinical trials, are discussed in this paper.  相似文献   

10.
Deficient thymopoiesis is a pivotal determinant of impaired immune competence following hematopoietic stem cell transplantation (HSCT). Stem cell factor (SCF) is essentially involved in early thymopoiesis. We evaluated whether SCF administration would improve recovery of thymopoiesis following HSCT in immunodeficient mice receiving: 1) bone marrow (BM) transplantation of congenic mice; or 2) human fetal liver HSCT in the human immune system mouse model. Following murine BM transplantation, SCF significantly enhanced thymopoiesis and peripheral T cell recovery in lymph nodes and spleen. SCF did not affect BM lymphoid progenitor recovery and/or expansion. Median thymic cellularity increased from 0.9 in PBS- to 266 × 10(4)/thymus in SCF-treated mice (p = 0.05). Following human HSCT in human immune system mice, higher thymic cellularity was observed in SCF-treated mice. Double-negative and early double-positive thymocyte subsets increased, but especially late double-positive, CD4 single-positive, and CD8 single-positive thymocyte subsets were significantly enhanced (p < 0.05). These results show that exogenous supply of SCF may significantly improve murine and human posttransplant thymopoiesis, for which the effect is probably exerted by directly promoting T cell development intrathymically rather than by enhanced entry of prethymically expanded lymphoid progenitors.  相似文献   

11.
The postulated almost unlimited potential of transplanted hematopoietic stem cells (HSCs) to transdifferentiate into cell types that do not belong to the hematopoietic system denotes a complete paradigm shift of the hierarchical hemopoietic tree. In several studies during the last few years, donor cells have been identified in almost all recipient tissues after allogeneic HSC transplantation (HSCT), supporting the theory that any failing organ could be accessible to regenerative cell therapy. However, the putative potential ability of the stem cells to cross beyond lineage barriers has been questioned by other studies which suggest that hematopoietic cells might fuse with non-hematopoietic cells and mimic the appearance of transdifferentiation. Proof that HSCs have preserved the capacity to transdifferentiate into other cell types remains to be demonstrated. In this review, we focus mainly on clinical studies addressing plasticity in humans who underwent allogeneic HSCT. We summarize the published data on non-hematopoietic chimerism, donor cell contribution to tissue repair, the controversies related to the methods used to detect donor-derived non-hematopoietic cells and the functional impact of this phenomenon in diverse specific target tissues and organs.  相似文献   

12.
《Cytotherapy》2023,25(2):162-173
Background aimsBone marrow-derived hematopoietic stem cell transplantation/hematopoietic progenitor cell transplantation (HSCT/HPCT) is widely used and one of the most useful treatments in clinical practice. However, the homing rate of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs) by routine cell transfusion is quite low, influencing hematopoietic reconstitution after HSCT/HPCT.MethodsThe authors developed a micro-living motor (MLM) strategy to increase the number of magnetically empowered bone marrow cells (ME-BMCs) homing to the bone marrow of recipient mice.ResultsIn the in vitro study, migration and retention of ME-BMCs were greatly improved in comparison with non-magnetized bone marrow cells, and the biological characteristics of ME-BMCs were well maintained. Differentially expressed gene analysis indicated that ME-BMCs might function through gene regulation. In the in vivo study, faster hematopoietic reconstitution was observed in ME-BMC mice, which demonstrated a better survival rate and milder symptoms of acute graft-versus-host disease after transplantation of allogeneic ME-BMCs.ConclusionsThis study demonstrated that ME-BMCs serving as MLMs facilitated the homing of HSCs/HPCs and eventually contributed to earlier hematopoietic reconstitution in recipients. These data might provide useful information for other kinds of cell therapies.  相似文献   

13.
Hematopoietic stem cells transplantation (HSCT) causes endothelial cell damage, disrupting hematopoietic microenviroment and leading to various complications. We hypothesized that infusion of endothelial progenitor cells (EPCs) may improve endothelium repair, facilitate hematopoietic reconstitution, and alleviate complications associated with HSCT. C57Bl6, and BALB/c mice received total body irradiation followed by infusion of C57Bl6-derived bone marrow (BM) cells, with or without concomitant infusion of C57Bl6-derived EPCs. The time course of hematopoietic and immune reconstitution and the severity of the graft-versus-host disease (GVHD) were monitored. Further, to confirm that EPCs promote endothelial cell recovery, HSCT mice were treated with anti-VE-cadherin antibody targeting the endothelium. The EPCs-treated mice exhibited accelerated recovery of BM vasculature, cellularity, hematopoietic stem and progenitor cell recovery, improved counts of lymphocyte subsets in peripheral blood, and facilitated spleen structure reconstruction. EPCs infusion also ameliorated the GVHD in the C57Bl6????BALB/c allo-HSCT model. Systemic administration of anti-VE-cadherin antibody significantly delayed hematological and immune reconstitution in the EPCs-infused mice. In conclusion, our data demonstrate that infusion of EPCs augments the hematopoietic and immune reconstitution, and alleviates the GVHD. These findings further highlight the relationship between the microvascular recovery, hematopoietic and immune reconstitution, and the GVHD.  相似文献   

14.
The reconstitution of anti-viral cellular immunity following hematopoietic stem cell transplantation (HSCT) is crucial in preventing cytomegalovirus (CMV)-associated complications. Thus immunological monitoring has emerged as an important tool to better target pre-emptive anti-viral therapies. However, traditional laboratory-based assays are too cumbersome and complicated to implement in a clinical setting. Here we conducted a prospective study of a new whole blood assay (referred to as QuantiFERON-CMV®) to determine the clinical utility of measuring CMV-specific CD8+ T-cell responses as a prognostic tool. Forty-one evaluable allogeneic HSCT recipients underwent weekly immunological monitoring from day 21 post-transplant and of these 21 (51.2%) showed CMV reactivation and 29 (70.7%) developed acute graft-versus-host disease (GvHD). Patients with acute GvHD (grade≥2) within 6 weeks of transplant showed delayed reconstitution of CMV-specific T-cell immunity (p = 0.013) and a higher risk of CMV viremia (p = 0.026). The median time to stable CMV-specific immune reconstitution was 59 days and the incidence of CMV reactivation was lower in patients who developed this than those who did not (27% versus 65%; p = 0.031). Furthermore, a failure to reconstitute CMV-specific immunity soon after the onset of CMV viraemia was associated with higher peak viral loads (5685 copies/ml versus 875 copies/ml; p = 0.002). Hence, QuantiFERON-CMV® testing in the week following CMV viremia can be useful in identifying HSCT recipients at risk of complicated reactivation.  相似文献   

15.
The age of tissues and cells can be accurately estimated by DNA methylation analysis. The multitissue DNA methylation (DNAm) age predictor combines the DNAm levels of 353 CpG dinucleotides to arrive at an age estimate referred to as DNAm age. Recent studies based on short‐term observations showed that the DNAm age of reconstituted blood following allogeneic hematopoietic stem cell transplantation (HSCT) reflects the age of the donor. However, it is not known whether the DNAm age of donor blood remains independent of the recipient's age over the long term. Importantly, long‐term studies including child recipients have the potential to clearly reveal whether DNAm age is cell‐intrinsic or whether it is modulated by extracellular cues in vivo. Here, we address this question by analyzing blood methylation data from HSCT donor and recipient pairs who greatly differed in chronological age (age differences between 1 and 49 years). We found that the DNAm age of the reconstituted blood was not influenced by the recipient's age, even 17 years after HSCT, in individuals without relapse of their hematologic disorder. However, the DNAm age of recipients with relapse of leukemia was unstable. These data are consistent with our previous findings concerning the abnormal DNAm age of cancer cells, and it can potentially be exploited to monitor the health of HSCT recipients. Our data demonstrate that transplanted human hematopoietic stem cells have an intrinsic DNAm age that is unaffected by the environment in a recipient of a different age.  相似文献   

16.
Impact of standardization on clinical cell analysis by flow cytometry   总被引:1,自引:0,他引:1  
The evolution of flow cytometry from a research tool to a pivotal technology for clinical diagnostic purposes has required significant efforts to standardize methods. The great advantage of flow cytometry is that it's applications are highly amenable to standardization. Here, we review the efforts that have been made for flow cytometric applications in four major fields of clinical cell analysis: CD4+ T-cell enumeration, CD34+ hematopoietic stem and progenitor cell enumeration, screening for the HLA-B27 antigen and leukemia/lymphoma immunophenotyping. These standardization efforts have been parallelled by the establishment of external quality assessment (EQA) schemes in many countries worldwide. The goal of these EQA exercises has been primarily educa-tional, but their results will increasingly serve as a basis for laboratory accreditation. This important development requires that the EQA schemes, in particular the quality of the distributed samples and the procedures for evaluating the results, meet the highest standards.  相似文献   

17.
Mammalian aging is associated with reduced tissue regeneration and loss of physiological integrity. With age, stem cells diminish in their ability to regenerate adult tissues, likely contributing to age‐related morbidity. Thus, we replaced aged hematopoietic stem cells (HSCs) with young‐donor HSCs using a novel mobilization‐enabled hematopoietic stem cell transplantation (HSCT) technology as an alternative to the highly toxic conditioning regimens used in conventional HSCT. Using this approach, we are the first to report an increase in median lifespan (12%) and a decrease in overall mortality hazard (HR: 0.42, CI: 0.273–0.638) in aged mice following transplantation of young‐donor HSCs. The increase in longevity was accompanied by reductions of frailty measures and increases in food intake and body weight of aged recipients. Young‐donor HSCs not only preserved youthful function within the aged bone marrow stroma, but also at least partially ameliorated dysfunctional hematopoietic phenotypes of aged recipients. This compelling evidence that mammalian health and lifespan can be extended through stem cell therapy adds a new category to the very limited list of successful anti‐aging/life‐extending interventions. Our findings have implications for further development of stem cell therapies for increasing health and lifespan.  相似文献   

18.
We report here a case of inguinal sparganosis, initially regarded as myeloid sarcoma, diagnosed in a patient undergone allogeneic hematopoietic transplantation (HSCT). A 56-year-old male patient having myelodysplastic syndrome was treated with allogeneic HSCT after myeloablative conditioning regimen. At day 5 post-HSCT, the patient complained of a painless palpable mass on the left scrotum and inguinal area. Pelvic magnetic resonance imaging and computed tomography revealed suspected myeloid sarcoma. Gun-biopsy was performed, and the result revealed eosinophilic infiltrations without malignancy. Subsequent serologic IgG antibody test was positive for sparganum. Excisional biopsy as a therapeutic diagnosis was done, and the diagnosis of sparganosis was confirmed eventually. This is the first report of sparganosis after allogeneic HSCT mimicking myeloid sarcoma, giving a lesson that the physicians have to consider the possibility of sparganosis in this clinical situation and perform adequate diagnostic and therapeutic approaches.  相似文献   

19.
Chronic graft-versus-host disease (cGVHD) is a common complication following allogeneic hematopoietic stem cell transplantation (HSCT), which is characterized by autoimmune like inflammatory responses and reduced levels of regulatory T cells (Tregs). Recently, the use of low-dose IL-2 has been reported to selectively increase Tregs and therefore facilitate immune regulation and promote clinical improvements in cGVHD patients. In this report, we describe the case of a cGVHD patient who was treated with daily low-dose IL-2 therapy. Our observations demonstrate that low-dose IL-2 could induce significant expansion of Tregs in vivo leading to improved Treg/Th17 ratios. The patient showed moderate clinical benefits suggesting that multiple factors may be involved in the immunological responses. Therefore, while the therapeutic potential of low-dose IL-2 is promising, strategic approaches may be needed to induce a clinically significant and sustained Treg effect.  相似文献   

20.
《Cytotherapy》2022,24(4):428-436
Background aimsCytomegalovirus (CMV) reactivation is a significant complication following allogeneic hematopoietic stem cell transplant (HSCT) and affects upwards of 40% of pediatric HSCT patients. Pre-emptive therapy remains the only effective treatment strategy available for pediatric patients following CMV reactivation. Little is known about how the timing of induction treatment following CMV reactivation impacts outcomes in pediatric patients, especially following ex vivo T-cell-depleted (TCD) HSCT.MethodsThe authors evaluated how the timing of induction treatment after CMV reactivation impacts overall survival (OS) and CMV disease in pediatric patients undergoing TCD HSCT at a single institution. The authors retrospectively analyzed patients treated on the pediatric service who received an initial ex vivo TCD HSCT at Memorial Sloan Kettering Cancer Center (MSKCC) from January 2010 to June 2018. CMV reactivation was defined as ≥1 CMV polymerase chain reaction >500 copies/mL in whole blood or >137 IU/mL in plasma within the first 180 days after allogeneic HSCT. To analyze the impact of the timing of induction treatment, the authors’ primary study outcome was OS and secondary outcome was CMV disease.ResultsA total of 169 patients who underwent an initial allogeneic TCD HSCT on the pediatric service at MSKCC from January 2010 to June 2018 were included in the analysis. Thirty-seven (22%) patients reactivated CMV during the first 180 days following HSCT. Of those patients who reactivated CMV, CMV donor/recipient (D/R) serostatus was as follows: D+/R+ n = 28 (76%) and D–/R+ n = 9 (24%). There was no CMV reactivation observed among recipients who were CMV-seronegative irrespective of donor serostatus. In those patients who reactivated CMV, the median time from HSCT to CMV reactivation was 24 days (interquartile range, 20–31). Eleven patients ultimately developed CMV disease in addition to CMV viremia, whereas the remaining patients had only CMV viremia. The cumulative incidence of CMV reactivation at 60 days was 45.2% (95% confidence interval [CI], 32.8–57.5) in the D+/R+ subgroup and 31% (95% CI, 14.2–47.9) in the D–/R+ subgroup. For those patients who reactivated CMV, 30 (81%) received induction treatment with ganciclovir or foscarnet. To analyze the impact of the timing of induction treatment on clinical outcomes, the authors restricted the analysis to those patients who reactivated CMV and received induction treatment (n = 30). The timing of induction treatment was significantly associated with OS, with optimal timing of initiation within a week of CMV reactivation (P = 0.02). There was no significant impact on the timing of induction treatment and risk of CMV disease (P = 0.30).ConclusionsIn ex vivo TCD HSCT in pediatric patients, early initiation of induction treatment after CMV reactivation is associated with improved OS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号