首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes. Sodium butyrate increased phase 2 enzyme activities in normal rat small intestine epithelial cells, Glutathione S-transferase and NAD(P)H:quinone oxidoreductase (NQO) in a dose-dependent manner; however, other short-chain fatty acids did not increase them. The mechanism of the induction of phase 2 enzymes with sodium butyrate sodium butyrate, but not other short-chain fatty acids was related to the increase of NF-E2-related factor 2 (Nrf2) nuclear translocation and the decrease in the levels of nuclear fraction p53. Sodium butyrate also caused enhancement of Nrf2 mRNA levels and suppression of p53 mRNA levels. Sodium butyrate enhances the activities of phase 2 enzymes via an increase in the Nrf2 protein levels in the nucleus and a decrease in the mRNA and protein levels of p53.  相似文献   

3.
We have obtained a number of variant HTC cells which are capable of vigorous replication in the presence of 6 mM sodium butyrate. These cells show characteristic changes in histone acetylation. H2A/H2B are no longer modified and the turnover of histones H3/H4 acetate is about 4-fold greater than in control HTC cells at the same butyrate concentration. Histone deposition continues successfully even though histones H3/H4 become hyperacetylated upon association with the chromatin. Prompt deacetylation of new histones does not appear to be a prerequisite for successful deposition processes. Initial enzymatic studies indicate that not only do the butyrate-resistant cells show an increased deacetylase activity (on a per cell basis), but also the enzyme is less sensitive to sodium butyrate under in vitro assay conditions. In contrast to control HTC cells in 6 mM butyrate in which dexamethasone induction of tyrosine aminotransferase is inhibited, the butyrate-resistant variant cells are capable of tyrosine aminotransferase induction even in the presence of butyrate. The implications of these observations are discussed.  相似文献   

4.
5.
Using cultured GH1 cells, a growth hormone and prolactin-producing rat pituitary cell line, we have shown that n-butyrate and other short chain carboxylic acids stimulate histone acetylation and elicit a reduction of thyroid hormone nuclear receptor which is inversely related to the extent of acetylation (Samuels, H. H., Stanley, F., Casanova, J., and Shao, T. C. (1980) J. Biol. Chem. 255, 2499-2508). In this study, we compared the n-butyrate and propionate modulation of receptor levels to regulation of the growth hormone and prolactin response by 3,5,3'-triiodo-L-thyronine (L-T3). n-Butyrate (0.1-10 mM) did not stimulate growth hormone production. L-T3 stimulated the growth hormone response 4- to 5-fold and n-butyrate (0.5-1 mM) increased L-T3 stimulation of growth hormone production 1.5- to 2-fold compared to L-T3 alone. L-T3 stimulation of growth hormone production at higher n-butyrate concentrations decreased in parallel with the n-butyrate-mediated reduction of receptor levels. In contrast with the growth hormone response, n-butyrate (0.5 mM) increased basal prolactin production about 5-fold. Prolactin production, which is inhibited 25 to 50% by L-T3, was stimulated between 20- and 70-fold by L-T3 + n-butyrate (0.5-1 mM) and this decreased at higher n-butyrate levels. Prolactin mRNA and growth hormone mRNA levels paralleled the changes in prolactin and growth hormone production rates. These effects of L-T3, n-butyrate, or L-T3 + n-butyrate appeared unrelated to changes in cAMP levels or global changes in DNA methylation of the growth hormone or prolactin genes. Propionate elicited the same effects as n-butyrate but at a 5- to 10-fold higher concentration consistent with their relative effect on stimulating acetylation of chromatin proteins. These results suggest that prolactin gene expression is under partial regulatory repression which is reversed by a carboxylic acid-mediated postsynthetic modification event which allows for stimulation of the prolactin gene by thyroid hormone.  相似文献   

6.
The effects of butyrate upon the extents of phosphorylation of histones H1 and H1(0) during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain greater than 98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1(0), H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1(0) phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1(0) in chromatin during the S or G2 phases of the cell cycle.  相似文献   

7.
Nuclei from hepatoma tissue culture (HTC) cells were isolated by standard methods and incubated in media commonly used for nuclease digestions (DNAase I and micrococcal nuclease) and for in vitro RNA synthesis. During the incubation, histones can be deacetylated from both control cells and cells treated with 6 mM sodium butyrate to enhance the levels of histone acetylation. Deacetylation of histone is much more apparent in nuclei isolated from sodium butyrate-treated cells. Inclusion of 6 mM sodium butyrate in the incubation medium effectively inhibits the endogenous deacetylase activity acting on histones H3 and H4, whereas sodium acetate at the same concentration has very little inhibitory effect.  相似文献   

8.
Dynamic histone acetylation of alfalfa (Medicago sativa) was studied in suspension cultures by short-term labeling with radioactive acetate. The relative labeling rates for the acetylated histones were in order of decreasing incorporation; H3.2 greater than H3.1 greater than H4 greater than H2B.1 greater than H2A.3. Histone H3 showed at least seven sites of acetylation, histone H2B.1 had six sites and histone H4 had five sites. Low numbers of acetylation sites were observed for histone H2B.2 and all histone H2A variants. The mass ratio, steady state acetylation and dynamic acetylation between major variant H3.1 and minor variant H3.2 were approx. 2:1, 1:2 and 2:5, respectively. Treatment of alfalfa cells with 50 mM n-butyrate did not lead to histone hyperacetylation, but instead interfered with histone acetylation labeling by acetate. The extent of apparent inhibition increased with time and concentration of butyrate. It is likely that the conversion of butyrate to acetylCoA results in dilution of the specific radioactivity of [3H]acetate in the acetylCoA pool thereby inhibiting the labeling reaction. This interpretation is supported by 14C-labeling of alfalfa acetylated histones by [1-14C]butyrate.  相似文献   

9.
10.
We have compared the effects of forskolin, N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP, Bt2-cAMP), and butyrate on several aspects of neuroblastoma cell physiology. The morphology of Neuro 2A cells was similar after incubation with forskolin and Bt2-cAMP, which caused extensive neurite outgrowth, whereas in the presence of butyrate some rudimentary neurites were formed but they were not nearly as extensive. All compounds produced a dose-dependent inhibition of cell proliferation, but the effect of Bt2-cAMP was more marked than that caused by forskolin, thus showing that the effect of Bt2-cAMP is due partially to the butyrate released. Acetylcholinesterase activity was lower in the cells incubated with butyrate or Bt2-cAMP than in untreated cells or in forskolin-treated cells. This suggests that cyclic AMP does not play a role in the regulation of this enzyme. Bt2-cAMP produced histone acetylation, a well-known effect of butyrate in cultured cells, whereas forskolin did not affect this modification. Consequently, the levels of thyroid hormone receptor, a nuclear protein whose concentration is regulated by butyrate through changes in acetylation of chromatin proteins, were decreased in cells incubated with Bt2-cAMP or butyrate, but were unaffected by forskolin. Butyrate elevated the concentration of histone H1(0), a protein that increases in neuroblastoma cells as a result of different treatments that block cell division. The concentration of H1(0) in the cells treated with Bt2-cAMP was at a level intermediate between that found after treatment with butyrate and with forskolin. The present results clearly indicate that some of the effects of Bt2-cAMP on neuroblastoma cells can be attributed to the butyryl moiety of this compound rather than to the cyclic nucleotide itself.  相似文献   

11.
12.
13.
AIM. This study was designed to examine whether the class I and class IIa histone deacetylase (HDAC) inhibitors, sodium butyrate and sodium valproate alter the expression of human NCOR1 and/or NCOR2 genes coding for N-CoR (nuclear receptor corepressor) and SMRT (silencing mediator for retinoid and thyroid hormone receptors), respectively. METHODS: Human leukemia HL-60 cells were treated for 24 h with 0.5 and 1 mM sodium butyrate, 1 to 3 mM sodium valproate, 1 mcM all-trans retinoic acid (ATRA) or cotreated with 1 mcM ATRA and 0.5 mM sodium butyrate. The acetylation of histones H3 and H4 was analysed by western blotting. The levels of NCOR1 and NCOR2 mRNA were determined by quantitative real-time PCR. Expression of NCF2 gene coding for the NADPH oxidase subunit p67phox was evaluated as a marker of myeloid differentiation. Results. Both butyrate and valproate increased the acetylation of histone H3 at Lys9 and/or Lys14 as well as histone H4 at Lys12. Both HDAC inhibitors caused a significant increase in NCF2 mRNA levels without affecting NCOR1 or NCOR2 mRNA levels. Similarly, ATRA alone or in combination with butyrate induced NCF2 gene expression without any significant influence on the expression of NCOR1 or NCOR2 genes. CONCLUSION: We conclude that inhibitors of class I and class IIa HDACs do not alter the expression of human NCOR1 or NCOR2 genes and that the onset of myeloid differentiation is not accompanied by induction or repression of these genes in HL-60 cells.  相似文献   

14.
Treatment of higher eukaryotic cells with short-chain fatty acids (SCFA) such as butyrate causes decreased levels of histone deacetylase (HDAC) activity and hyperacetylation of histones, and thereby affects gene expression, cell growth and differentiation. Entamoeba parasites encounter high levels of SCFA in the host colon, and in vitro these compounds allow trophozoite stage parasites to multiply but prevent their differentiation into infectious cysts. The Entamoeba invadens IP-1 histone H4 protein has an unusual number of lysines in its N-terminus, and these become hyperacetylated in trophozoites exposed to the HDAC inhibitors trichostatin A (TSA) or HC-toxin, but not in trophozoites exposed to butyrate. We have now found that several other commonly studied isolates of Entamoeba parasites also have an extended set of histone H4 acetylation sites that become hyperacetylated in response to TSA, but hypoacetylated in response to butyrate, suggesting an unusual sensitivity of this parasite's histone modifying enzymes to SCFA. Butyrate was found to enter trophozoites in a pH-dependent manner consistent with diffusive entry of the un-ionised form of the fatty acid into the amoebae. Transit of the Entamoeba organism through areas of the host intestine with distinct pH and SCFA concentrations would therefore result in very different levels of SCFA within the parasite. Entamoeba appears to have acquired unique alterations of its histone acetylation mechanism that may allow for its growth in the presence of varying amounts of the bacterial fermentation products.  相似文献   

15.
16.
Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation.  相似文献   

17.
In order to explore the relationship between unacetylated arginine-rich histones and condensed chromatin structure, the extent of histone acetylation was examined in cultured cell lines derived from three species of deer mice. These species differ considerably in their genomic content of heterochromatin but contain essentially the same euchromatin content. Cells of Peromyscus eremicus, containing 34–36% more constitutive heterochromatin than Peromyscus boylii or Peromyscus crinitus cells were found to contain 28–35% more unacetylated histone H4, 22–29% more unacetylated histone H3, and 18–22% more unacetylated histone H2B. This relationship between unacetylated histones and heterochromatin content was further explored by inducing hyperacetylation of P. eremicus and P. boylii histones through treatment of cells with 15 mM sodium butyrate for 24 h. It was found that the percentages of unacetylated histones H3 and H4 remaining after butyrate treatment were proportional to the amount of constitutive heterochromatin in the genome. These data support the concept that a small core of histones in constitutive heterochromatin is inaccessible to acetylation. It was also found that the acetylated state of isolated histones was sensitive to the method of histone extraction. Thus concern must be given to preparative procedures when studying histone acetylation in order to minimize these acetate losses.  相似文献   

18.
BackgroundThe expressions of genes related to lipid metabolism are decreased in adipocytes with insulin resistance. In this study, we examined the effects of fatty acids on the reduced expressions and histone acetylation of lipid metabolism-related genes in 3T3-L1 adipocytes treated with insulin resistance induced by tumor necrosis factor (TNF)-α.MethodsShort-, medium-, and long-chain fatty acid were co-administered with TNF-α in 3T3-L1 adipocytes. Then, mRNA expressions and histone acetylation of genes involved in lipid metabolism were determined using mRNA microarrays, qRT-PCR, and chromatin immunoprecipitation assays.ResultsWe found in microarray and subsequent qRT-PCR analyses that the expression levels of several lipid metabolism-related genes, including Gpd1, Cidec, and Cyp4b1, were reduced by TNF-α treatment and restored by co-treatment with a short-chain fatty acid (C4: butyric acid) and medium-chain fatty acids (C8: caprylic acid and C10: capric acid). The pathway analysis of the microarray showed that capric acid enhanced mRNA levels of genes in the PPAR signaling pathway and adipogenesis genes in the TNF-α-treated adipocytes. Histone acetylation around Cidec and Gpd1 genes were also reduced by TNF-α treatment and recovered by co-administration with short- and medium-chain fatty acids.General significanceMedium- and short-chain fatty acids induce the expressions of Cidec and Gpd1, which are lipid metabolism-related genes in insulin-resistant adipocytes, by promoting histone acetylation around these genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号