首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Mammalian cytochrome c (Cyt c) has two primary functions: transfer of electrons from the bc1 complex to cytochrome c oxidase (COX) as part of the mitochondrial electron transport chain (ETC), and participation in type II apoptosis. Several studies have indicated that components of the ETC can be phosphorylated, and we have recently shown that the Cyt c electron acceptor COX is phosphorylated on Tyr-304 of subunit I in liver upon activation of the cAMP-dependent pathway, leading to strong enzyme inhibition. However, covalent modification of Cyt c through phosphorylation has not yet been reported. We have isolated Cyt c from cow heart under conditions that preserve the physiological in vivo phosphorylation status. Western analysis with an anti-phosphotyrosine antibody indicated tyrosine phosphorylation. The site of phosphorylation was definitively assigned by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS) to Tyr-97, one of the four tyrosine residues present in Cyt c. The phosphorylated tyrosine is part of a motif that contains five residues identical to the tyrosine phosphorylation site in COX subunit I. Spectral analysis revealed that the characteristic 695 nm absorption band is shifted to 687 nm and reversed after treatment with alkaline phosphatase. This band results from the Met-80-heme iron bond, and its shift might indicate changes in the catalytic heme crevice. In vivo phosphorylated Cyt c shows enhanced sigmoidal kinetics with COX, and half-maximal turnover is observed at a Cyt c substrate concentration of 5.5 microM compared to 2.5 microM for alkaline phosphatase-treated Cyt c. Possible consequences of Tyr-97 phosphorylation with respect to cardiolipin binding and of location of Tyr-97 in close proximity to Lys-7, a crucial residue for interaction with Apaf-1 during apoptosis, are discussed.  相似文献   

3.
Differentiating male germ cells express a testis-specific form of cytochrome c (Cyt c(T)) that is distinct from the cytochrome c expressed in somatic cells (Cyt c(S)). To examine the role of Cyt c(T) in germ cells, we generated mice null for Cyt c(T). Homozygous Cyt c(T)(-/-) pups were statistically underrepresented (21%) but developed normally and were fertile. However, spermatozoa isolated from the cauda epididymis of Cyt c(T)-null animals were less effective in fertilizing oocytes in vitro and contain reduced levels of ATP compared to wild-type sperm. Sperm from Cyt c(T)-null mice contained a greater number of immotile spermatozoa than did samples from control mice, i.e., 53.1% +/- 13.7% versus 33.2% +/- 10.3% (P < 0.0001) for vas deferens sperm and 40.1% +/- 9.6% versus 33.2% +/- 7.5% (P = 0.0104) for epididymal sperm. Cyt c(T)-null mice often exhibit early atrophy of the testes after 4 months of age, losing germ cells as a result of increased apoptosis. However, no difference in the activation of caspase-3, -8, or -9 was detected between the Cyt c(T)(-/-) testes and controls. Our data indicate that the Cyt c(T)-null testes undergo early atrophy equivalent to that which occurs during aging as a consequence of a reduction in oxidative phosphorylation.  相似文献   

4.
Cytochrome c (Cyt c) is part of the mitochondrial electron transport chain (ETC), accepting electrons from bc(1) complex and transferring them to cytochrome c oxidase (CcO). The ETC generates the mitochondrial membrane potential, which is used by ATP synthase to produce ATP. In addition, the release of Cyt c from the mitochondria often commits a cell to undergo apoptosis. Considering its central role in life (respiration) and death (apoptosis) decisions one would expect tight regulation of Cyt c function. Reversible phosphorylation is a main cellular regulatory mechanism, but the effect of cell signaling targeting the mitochondrial oxidative phosphorylation system is not well understood, and only a small number of proteins that can be phosphorylated have been identified to date. We have recently shown that Cyt c isolated from cow heart tissue is phosphorylated on tyrosine 97 in vivo, which leads to inhibition of respiration in the reaction with CcO. In this study we isolated Cyt c from a different organ, cow liver, under conditions preserving the physiological phosphorylation state. Western analysis with a phosphotyrosine specific antibody suggested that liver Cyt c is phosphorylated. Surprisingly, the phosphorylation site was unambiguously assigned to Tyr-48 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS), and not to the previously identified phospho-Tyr-97 in cow heart. As is true of Tyr-97, Tyr-48 is conserved in eukaryotes. As one possible consequence of Tyr-48 phosphorylation we analyzed the in vitro reaction kinetics with isolated cow liver CcO revealing striking differences. Maximal turnover of Tyr-48 phosphorylated Cyt c was 3.7 s(-1) whereas dephosphorylation resulted in a 2.2 fold increase in activity to 8.2 s(-1). Effects of Tyr-48 phosphorylation based on the Cyt c crystal structure are discussed.  相似文献   

5.
During apoptosis, cytochrome c released from mitochondria activates Apaf-1, a cofactor of caspase-9. The evidence that cytochrome c can activate Apaf-1 is abundant, but the proof that cytochrome c is required for apoptosis is limited to two studies that used genetically modified mice. One of these studies concluded that in some tissues apoptosis may require Apaf-1 but not cytochrome c, which indicated the need to analyze the requirement of cytochrome c beyond the mouse models, and in human tumor cells in particular. In this study, we designed tools to silence cytochrome c expression in human cells and tested these tools in an experimental system of oncogenic transformation. We found that cytochrome c was required for apoptosis induced by both DNA damage and, unexpectedly, TNFalpha. Overall, this study established that cytochrome c is required for apoptosis in human cells and provided tools to dissect mechanisms of apoptosis in various experimental models.  相似文献   

6.
Y Hu  M A Benedict  L Ding  G Nú?ez 《The EMBO journal》1999,18(13):3586-3595
Apaf-1 plays a critical role in apoptosis by binding to and activating procaspase-9. We have identified a novel Apaf-1 cDNA encoding a protein of 1248 amino acids containing an insertion of 11 residues between the CARD and ATPase domains, and another 43 amino acid insertion creating an additional WD-40 repeat. The product of this Apaf-1 cDNA activated procaspase-9 in a cytochrome c and dATP/ATP-dependent manner. We used this Apaf-1 to show that Apaf-1 requires dATP/ATP hydrolysis to interact with cytochrome c, self-associate and bind to procaspase-9. A P-loop mutant (Apaf-1K160R) was unable to associate with Apaf-1 or bind to procaspase-9. Mutation of Met368 to Leu enabled Apaf-1 to self-associate and bind procaspase-9 independent of cytochrome c, though still requiring dATP/ATP for these activities. The Apaf-1M368L mutant exhibited greater ability to induce apoptosis compared with the wild-type Apaf-1. We also show that procaspase-9 can recruit procaspase-3 to the Apaf-1-procaspase-9 complex. Apaf-1(1-570), a mutant lacking the WD-40 repeats, associated with and activated procaspase-9, but failed to recruit procaspase-3 and induce apoptosis. These results suggest that the WD-40 repeats may be involved in procaspase-9-mediated procaspase-3 recruitment. These studies elucidate biochemical steps required for Apaf-1 to activate procaspase-9 and induce apoptosis.  相似文献   

7.
Cytochrome c (Cc) binding to apoptosis protease activation factor-1 (Apaf-1) is a critical activation step in the execution phase of apoptosis. Here we report studies that help define the Cc:Apaf-1 binding surface. It is shown that a large number of Cc residues, including residues 7, 25, 39, 62-65, and 72, are involved in the Cc:Apaf-1 interaction. Mutation of residue 72 eliminated Cc activity whereas mutations of residues 7, 25, 39, and 62-65 showed reduced activity in an additive fashion. The implications of this binding model for both recognition and modulation of protein-protein interactions are briefly discussed.  相似文献   

8.

Background

Our previous study showed that the NS1 protein of highly pathogenic avian influenza A virus H5N1 induced caspase-dependent apoptosis in human alveolar basal epithelial cells (A549), supporting its function as a proapoptotic factor during viral infection, but the mechanism is still unknown.

Results

To characterize the mechanism of NS1-induced apoptosis, we used a two-hybrid system to isolate the potential NS1-interacting partners in A549 cells. We found that heat shock protein 90 (Hsp90) was able to interact with the NS1 proteins derived from both H5N1 and H3N2 viruses, which was verified by co-immunoprecitation assays. Significantly, the NS1 expression in the A549 cells dramatically weakened the interaction between Apaf-1 and Hsp90 but enhanced its interaction with cytochrome c (Cyt c), suggesting that the competitive binding of NS1 to Hsp90 might promote the Apaf-1 to associate with Cyt c and thus facilitate the activation of caspase 9 and caspase 3.

Conclusions

The present results demonstrate that NS1 protein of Influenza A Virus interacts with heat hock protein Hsp90 and meidates the apoptosis induced by influenza A virus through the caspase cascade.
  相似文献   

9.
Ding X  Li J  Hu J  Li Q 《Analytical biochemistry》2005,339(1):46-53
The direct electron transfer of surface-confined horse heart cytochrome c (Cyt c) was achieved using COOH-terminated alkanethiolate-modified gold electrode. Later DNA was immobilized on the two-layer modified electrode. The quantitative determination of DNA was explored and the interaction between cytochrome c and DNA was studied. The binding site sizes were determined to be 15 bp per Cyt c molecule with double-stranded (ds) DNA and 30 nucleotides binding one Cyt c molecule with single-stranded (ss) DNA. At the dsDNA/Cyt c/MUA/Au electrode, the rate constant of oxidation electron transfer k(s,ox)=1.59x10(-3)cms-1 was obtained, at the ssDNA/Cyt c/MUA/Au electrode, the value was 2.43x10(-3)ms-1 when the scan rate was 1.0V/s. The different electrodes were characterized with electrochemical quartz crystal microbalance and atomic force microscope.  相似文献   

10.
Based on experiments with cultured fibroblasts, the apoptosis regulators caspase-9 and Apaf-1 are hypothesized to function as tumor suppressors. To investigate their in vivo role in lymphomagenesis, an IgH enhancer-driven c-myc transgene was crossed onto Apaf-1(-/-) and caspase-9(-/-) mice. Due to perinatal lethality, Emu-myc transgenic Apaf-1(-/-) or caspase-9(-/-) fetal liver cells were used to reconstitute lethally irradiated recipient mice. Surprisingly, no differences were seen in rate, incidence, or severity of lymphoma with loss of Apaf-1 or caspase-9, and Apaf-1 was not a critical determinant of anticancer drug sensitivity of c-myc-induced lymphomas. Moreover, loss of Apaf-1 did not promote oncogene-induced transformation of mouse embryo fibroblasts. Thus, Apaf-1 and caspase-9 do not suppress c-myc-induced lymphomagenesis and embryo fibroblast transformation.  相似文献   

11.
Apo cytochrome c inhibits caspases by preventing apoptosome formation   总被引:2,自引:0,他引:2  
Caspases are cysteine proteases and potent inducers of apoptosis. Their activation and activity is therefore tightly regulated. There are several mechanisms by which caspases can be activated but one key pathway involves release of holo cytochrome c from mitochondria into the cytoplasm. Cytoplasmic holo cytochrome c binds to apoptotic protease activating factor-1 (Apaf-1), driving the formation of an Apaf-1 oligomer (the apoptosome) which in turn binds and activates caspase-9. Previously we showed that the apo form of cytochrome c (lacking heme) can bind Apaf-1 and block both holo-dependent caspase activation in cell extracts and Bax-induced apoptosis in cells. Here we tested the ability of apo cytochrome c to inhibit caspase-9 activation induced by recombinant Apaf-1. Furthermore, using purified proteins and size exclusion chromatography we show that apo cytochrome c prevents holo cytochrome c-dependent apoptosome formation.  相似文献   

12.
Bcr-Abl, activated in chronic myelogenous leukemias, is a potent cell death inhibitor. Previous reports have shown that Bcr-Abl prevents apoptosis through inhibition of mitochondrial cytochrome c release. We report here that Bcr-Abl also inhibits caspase activation after the release of cytochrome c. Bcr-Abl inhibited caspase activation by cytochrome c added to cell-free lysates and prevented apoptosis when cytochrome c was microinjected into intact cells. Bcr-Abl acted posttranslationally to prevent the cytochrome c-induced binding of Apaf-1 to procaspase 9. Although Bcr-Abl prevented interaction of endogenous Apaf-1 with the recombinant prodomain of caspase 9, it did not affect the association of endogenous caspase 9 with the isolated Apaf-1 caspase recruitment domain (CARD) or Apaf-1 lacking WD-40 repeats. These data suggest that Apaf-1 recruitment of caspase 9 is faulty in the presence of Bcr-Abl and that cytochrome c/dATP-induced exposure of the Apaf-1 CARD is likely defective. These data provide a novel locus of Bcr-Abl antiapoptotic action and suggest a distinct mechanism of apoptosomal inhibition.  相似文献   

13.
How Bcl-2 and its pro-survival relatives prevent activation of the caspases that mediate apoptosis is unknown, but they appear to act through the caspase activator apoptosis protease-activating factor 1 (Apaf-1). According to the apoptosome model, the Bcl-2-like proteins preclude Apaf-1 activity by sequestering the protein. To explore Apaf-1 function and to test this model, we generated monoclonal antibodies to Apaf-1 and used them to determine its localization within diverse cells by subcellular fractionation and confocal laser scanning microscopy. Whereas Bcl-2 and Bcl-x(L) were prominent on organelle membranes, endogenous Apaf-1 was cytosolic and did not colocalize with them, even when these pro-survival proteins were overexpressed or after apoptosis was induced. Immunogold electron microscopy confirmed that Apaf-1 was dispersed in the cytoplasm and not on mitochondria or other organelles. After the death stimuli, Bcl-2 and Bcl-x(L) precluded the release of the Apaf-1 cofactor cytochrome c from mitochondria and the formation of larger Apaf-1 complexes, which are steps that presage apoptosis. However, neither Bcl-2 nor Bcl-x(L) could prevent the in vitro activation of Apaf-1 induced by the addition of exogenous cytochrome c. Hence, rather than sequestering Apaf-1 as proposed by the apoptosome model, Bcl-2-like proteins probably regulate Apaf-1 indirectly by controlling upstream events critical for its activation.  相似文献   

14.
Cytochrome c (Cyt c) has key roles in both mitochondrial electron transfer and apoptosis onset and is therefore likely undergoing a strong selective pressure against amino acid variation. Nevertheless, a phylogenetically fast amino acid replacement rate in the Cyt c of species of the anthropoid primate lineage was recently reported. We therefore looked for the presence of nonsynonymous single nucleotide polymorphisms (nsSNPs) in the human Cyt c (HGNC approved gene symbol: CYCS), which, given its cellular constraints, could have important functional consequences, and found a large number of putative nsSNPs reported in the dbSNP database. We then subjected these putative SNPs to experimental validation by sequencing the Cyt c gene in a panel of 95 individuals assumed as a standard reference of the human population diversity. Surprisingly, none of the putative SNPs survived experimental validation. We conclude that non-rare allelic variants of the Cyt c protein are absent in the human populations analyzed in this study.  相似文献   

15.
Pro-apoptotic Bax and Bak have been implicated in the regulation of p53-dependent apoptosis. We assessed the ability of primary baby mouse kidney (BMK) epithelial cells from bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice to be transformed by E1A alone or in conjunction with dominant-negative p53 (p53DD). Although E1A alone transformed BMK cells from p53-deficient mice, E1A alone did not transform BMK cells from bax(-/-), bak(-/-), or bax(-/-) bak(-/-) mice. Thus, the loss of both Bax and Bak was not sufficient to relieve p53-dependent suppression of transformation in epithelial cells. To test the requirement for Bax and Bak in other death signaling pathways, stable E1A plus p53DD-transformed BMK cell lines were derived from the bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice and characterized for their response to tumor necrosis factor-alpha (TNF-alpha)-mediated apoptosis. The loss of both Bax and Bak severely impaired TNF-alpha-mediated apoptosis, but the presence of either Bax or Bak alone was sufficient for cell death. Cytochrome c was released from mitochondria, and caspase-9 was activated in Bax- or Bak-deficient cells in response to TNF-alpha but not in cells deficient in both. Thus, either Bax or Bak is required for death signaling through mitochondria in response to TNF-alpha, but both are dispensable for p53-dependent transformation inhibition.  相似文献   

16.
A systematic screen for dominant-negative mutations of the CYT1 gene, which encodes cytochrome c(1), revealed seven mutants after testing approximately 10(4) Saccharomyces cerevisiae strains transformed with a library of mutagenized multicopy plasmids. DNA sequence analysis revealed multiple nucleotide substitutions with six of the seven altered Cyt1p having a common R166G replacement, either by itself or accompanied with other amino acid replacements. A single R166G replacement produced by site-directed mutagenesis demonstrated that this change produced a nearly nonfunctional cytochrome c(1), with diminished growth on glycerol medium and diminished respiration but with the normal or near normal level of cytochrome c(1) having an attached heme group. In contrast, R166K, R166M, or R166L replacements resulted in normal or near normal function. Arg-166 is conserved in all cytochromes c(1) and lies on the surface of Cyt1p in close proximity to the heme group but does not seem to interact directly with any of the physiological partners of the cytochrome bc(1) complex. Thus, the large size of the side chain at position 166 is critical for the function of cytochrome c(1) but not for its assembly in the cytochrome bc(1) complex.  相似文献   

17.
The possibility of a Photosystem II (PS II) cyclic electron flow via Cyt b-559 catalyzed by carbonylcyanide m-chlorophenylhydrazone (CCCP) was further examined by studying the effects of the PS II electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ) on the light-induced changes of the redox states of Cyt b-559. Addition to barley thylakoids of micromolar concentrations of DCBQ completely inhibited the changes of the absorbance difference corresponding to the photoreduction of Cyt b-559 observed either in the presence of 10 M ferricyanide or after Cyt b-559 photooxidation in the presence of 2 M CCCP. In CCCP-treated thylakoids, the concentration of photooxidized Cyt b-559 decreased as the irradiance of actinic light increased from 2 to 80 W m-2 but remained close to the maximal concentration (0.53 photooxidized Cyt b-559 per photoactive Photosystem II) in the presence of 50 M DCBQ. The stimulation of Cyt b-559 photooxidation in parallel with the inhibition of its photoreduction caused by DCBQ demonstrate that the extent of the light-induced changes of the redox state of Cyt b-559 in the presence of CCCP is determined by the difference between the rates of photooxidation and photoreduction of Cyt b-559 occuring simultaneously in a cyclic electron flow around PS II.We also observed that the Photosystem I electron acceptor methyl viologen (MV) at a concentration of 1 mM barely affected the rate and extent of the light-induced redox changes of Cyt b-559 in the presence of either FeCN or CCCP. Under similar experimental conditions, MV strongly quenched Chl-a fluorescence, suggesting that Cyt b-559 is reduced directly on the reducing side of Photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - ANT-2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - CCCP carbonylcyanide-m-chlorophenylhydrazone - DCBQ 2,6-dichloro-p-benzoquinone - FeCN ferricyanide - MV methyl viologen - P680 Photosystem II reaction center Chl-a dimer CIW-DPB publication No. 1118.  相似文献   

18.
Cytochrome c, released from mitochondria into the cytosol, triggers formation of the apoptosome resulting in activation of caspases. This paper reviews the evidence for and against the redox state of cytochrome c regulating apoptosis, and possible mechanisms of this. Three research groups have found that the oxidized form of cytochrome c (Fe(3+)) can induce caspase activation via the apoptosome, while the reduced form (Fe(2+)) cannot. It is unclear whether this is due to the oxidized and reduced forms of cytochrome c having: (i) different affinities for Apaf-1, (ii) different abilities to activate Apaf-1 once bound, or (iii) different affinities for other components of the cell. Experiments replacing the Fe of cytochrome c with redox-inactive metals indicate that cytochrome c does not have to change redox states to activate caspases. In healthy cells, cytosolic cytochrome c is rapidly reduced by various enzymes and/or reductants, which may function to block apoptosis. However, in apoptotic cells, cytosolic cytochrome c is rapidly oxidized by mitochondrial cytochrome oxidase, to which it has access due to permeabilization of the outer membrane. Regulation of the redox state of cytochrome c potentially enables regulation of the intrinsic pathway of apoptosis at a relatively late stage.  相似文献   

19.
Ren Y  Wang WH  Wang YH  Case M  Qian W  McLendon G  Huang ZX 《Biochemistry》2004,43(12):3527-3536
To characterize the cytochrome b(5) (Cyt b(5))-cytochrome c (Cyt c) interactions during electron transfer, variants of Cyt b(5) have been employed to assess the contributions of electrostatic interactions (substitution of surface charged residues Glu44, Glu48, Glu56, and Asp60 and heme propionate), hydrophobic interactions, and the thermodynamic driving forces (substitutions for hydrophobic residues in heme pocket residues Phe35, Pro40, Val45, Phe58, and Val61). The electrostatic interactions play an important role in maintaining the stability and specificity of the Cyt b(5)-Cyt c complex that is formed. There is no essential effect on the intraprotein complex electron transfer even if most of the involved negatively charged residues on the surface of Cyt b(5) have been removed. The results support a dynamic docking paradigm for Cyt b(5)-Cyt c interactions. The orientation that is optimal for binding may not be optimal form for electron transfer. Substitution of hydrophobic residues does not have a significant effect on the binding between Cyt b(5) and Cyt c; rather, it regulates the electron transfer rates via changes in the driving force. Combining the electron transfer studies of the Cyt b(5)-Cyt c system and the Cyt b(5)-Zn-Cyt c system, we obtain the reorganization energy (0.6 eV) at an ionic strength of 150 mM.  相似文献   

20.
Fully sulfonated polyaniline nano-particles, nano-fibrils and nano-networks have been achieved for the first time by electrochemical homopolymerization of orthanilic acid using a three-step electrochemical deposition procedure in a mixed solvent of acetonitrile (ACN) and water. The diameter of the uniform nano-particles is about 60 nm, and the nano-fibrils can be organized in two-dimensional (2D) or three-dimensional (3D) non-periodic networks with good electrical contact. Average distance between contacts is about 850 and 600nm for a 2D and 3D system, respectively. The details of the poly(orthanilic acid) (POA) nano-structure were examined with a field emission scanning electron microscope (SEM). The structure and properties of POA were characterized with FTIR, UV-vis and electrochemical methods. The 3D POA nano-networks coated platinum electrode gave a direct electrochemical behavior of horse heart cytochrome c (Cyt c) immobilized on this electrode surface, a pair of well-defined redox waves with formal potential (E( degrees ')) of -0.032 V (versus Ag/AgCl) was achieved. The interaction between Cyt c and POA makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods were used to investigate the interaction of Cyt c with POA. The immobilized Cyt c in the nano-networks POA film maintained its activity, showing a surface-controlled electrode process with the electron transfer rate constant (k(s)) of 21s(-1) and a of 0.53, and could be used for the electrocatalytic reduction of hydrogen peroxide. The quantitative determination of Cyt c by differential pulse voltammetry (DPV) using the fully sulfonated 3D POA nano-networks film coated platinum electrode was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号