首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of cAMP and cGMP phosphodiesterases (EC 3.1.4.1), adenylate cyclase (EC 4.6.1.1) and protein carboxyl-methylase (EC 2.1.1.24) were measured in the particulate and soluble (105 000 g supernatant) fractions of washed spermatozoa isolated from five segments of the adult rat epididymis. The activities of both phosphodiesterases decreased during epididymal transit, whereas adenylate cyclase and protein carboxyl-methylase underwent a progressive increase, the latter showing the most marked alteration. Both cAMP and cGMP phosphodiesterases as well as the adenylate cyclase were all associated primarily with the particulate fraction, and the extent to which these enzymes were associated with the membranes increased as the spermatozoa passed through the epididymis. Sperm protein carboxyl-methylase activity was, on the other hand, predominantly soluble in all segments of the epididymis. Adenylate cyclase, cAMP phosphodiesterase and protein carboxyl-methylase activities were found predominantly in the sperm tails, whereas cGMP phosphodiesterase was equally distributed between heads and tails. These observations imply that the acknowledged increase in intracellular cAMP levels which occurs in spermatozoa during epididymal transit may be a consequence of both increased synthesis (adenylate cyclase) and reduced hydrolysis (phosphodiesterase).  相似文献   

2.
A chemically defined in vitro differentiating condition was used to study the potential role of cyclic AMP (cAMP) and adenylate cyclase activators on the transformation of Trypanosoma cruzi epimastigotes to the infective metacyclic trypomastigotes (metacyclogenesis). It was observed that both addition of cAMP analogs or adenylate cyclase activators to the differentiating medium stimulated the transformation of epimastigotes to metacyclic trypomastigotes. These results were further corroborated by showing that inhibitors of cAMP phosphodiesterase were stimulatory while activators of this enzyme inhibited the metacyclogenesis process. On the other hand, inhibitors of calmodulin inhibited the transformation of epimastigotes to metacyclic trypomastigotes, suggesting that T. cruzi adenylate cyclase might be activated by calmodulin. In addition, the results strongly suggest that guanine nucleotide binding proteins are involved in T. cruzi adenylate cyclase activation. This system may be useful for studying cell differentiation mechanisms in eukaryotes.  相似文献   

3.
Protein kinase, phosphodiesterase and adenylate cyclase of plasma membrane of adipocytes and the effect of the feedback regulator (FR) on these three enzymes was measured and compared. The basal level ratio of adenylate cyclase to phosphodiesterase to protein kinase was 1:1.9:3.0. Epinephrine and/or FR alters this ratio. FR stimulated protein kinase activity up to 3 fold in the presence of a wide range of enzyme concentrations, 5-50 mug membrane protein/tube. The concentration of FR effective for stimulation of membrane protein kinase was much greater than that needed for inhibition of adenylate cyclase and phosphodiesterases. The inhibition by FR on adenylate cyclase was the most potent effect among the 3 enzymes. 1 U (or 2 U/ml) of FR inhibited 50% of the adenylate cyclase activity in a defined system. The maximum effective concentration of FR for stimulation of membrane protein kinase was greater than 10 U/ml. Histone type 11A was the best substrate for protein phosphorylation so far observed. The FR stimulatory effect was observed at all substrate concentrations used ranging from 1-5 mg/ml. A NaF concentration curve shows that 15 mM NaF gave maximum phosphorylation. The stimulatory effect of FR was observed both in the presence and absence of NaF. Protein kinase of adipocyte plasma membrane was mainly cAMP-independent. The effect of FR (20 U/ml) in stimulation of protein phosphorylation was much greater than that of cAMP (1 X 10(-6) M). The cAMP and FR effects seemed to be additive. Preincubation of plasma membrane with FR in the absence of ATP resulted in no decrease but slight increase in protein kinase activity. A shift in protein kinase, phosphodiesterase and adenylate cyclase ratios by FR suggests the regulatory role of FR in cAMP metabolism in adipocytes.  相似文献   

4.
The prostaglandin endoperoxide PGH2 (15-hydroxy-9alpha, 11alpha-peroxidoprosta-5,13-dienoic acid), at a concentration of 2.8 x 10(-5) M inhibited basal adenylate cyclase activity 11% and epinephrine-stimulated activity 30 to 35%. PGH2 inhibited epinephrine-stimulated enzyme activity in the presence of 10 mM theophylline, 2.5 mM adenosine 3':5'-monophosphate (cAMP), or in the absence of inhibitors or substrates of the cAMP phosphodiesterase. When the cAMP phosphodiesterase was assayed directly using 62 nM and 1.1 muM cAMP, PGH2 did not affect the 100,000 x g particulate cAMP phosphodiesterase from fat cells. The inhibition of adenylate cyclase by PGH2 was readily reversible. A 6-min preincubation of ghost membranes with PGH2, followed by washing, did not alter subsequent epinephrine-stimulated adenylate cyclase activity. During epinephrine stimulation, the PGH2 inhibition was apparent on initial rates of cAMP synthesis, and the addition of PGH2 to the enzyme system at any point during an assay markedly reduced the rate of cAMP synthesis. Between 2.8 x 10(-7) M and 2.8 x 10(-5) M, PGH2 inhibited epinephrine-stimulated enzyme activity in a concentration-dependent manner. The stimulation of adenylate cyclase by thyroid-stimulating hormone, glucagon, and adrenocorticotropic hormone as well as by epinephrine was antagonized by PGH2, suggesting that PGH2 may be an endogenous feedback regulator of hormone-stimulated lipolysis in adipose tissue.  相似文献   

5.
Antioxidants, dimethylsulfoxide (DMSO) and dimethylthiourea (DMTU), at concentrations not affecting the viability of blood cells (haemocytes) from the larval stage of 3 lepidopteran insects - Galleria mellonella, Lymantria dispar, and Malacosoma disstria - differed in their influence on the innate binding of haemocytes to glass, bacteria to haemocytes, and on humoral responses to alien materials. In vitro DMSO had little effect, whereas DMTU substantially impaired the adhesion of the haemocyte types, the plasmatocytes and granular cells, to slides as well as the attachment of Bacillus subtilis to these haemocytes. Although both antioxidants increased lysozyme and phenoloxidase activities, there was no correlation of enzyme activity and haemocyte adhesion responses, possibly reflecting sequestered radicals. Nitric oxide and hydroxyl radicals offset the DMTU effect. In the absence of antioxidants, inactivate protein kinases A (PKA) and C (PKC) enhanced haemocyte aggregation. In general, DMSO, as opposed to DMTU, did not alter the effects of PKA and PKC activators and inhibitors on haemocyte aggregation or of PKC and PKA activities. High concentrations of DMSO and all levels of DMTU, although inhibiting PKA and PKC, inhibited haemocyte adhesion to slides. Comparable results occurred for DMTU-treated haemocytes incubated with B. subtilis. In vivo DMSO, unlike DMTU, did not impair plasmatocyte or granular cell responses to foreign materials, including bacterial removal from the haemolymph and nodulation.  相似文献   

6.
The extracellular levels of cyclic AMP (cAMP), cAMP phosphodiesterase activity, and adenylate cyclase activity were measured at various intervals during growth and morphogenesis of Arthrobacter crystallopoietes. There was a significant rise in the extracellular cAMP level at the onset of stationary phase, and this rise coincided with a decrease in intracellular cAMP. The phosphodiesterase activity measured in vitro increased in the early exponential phase of growth as intracellular cAMP decreased, and, conversely, prior to the onset of stationary phase the phosphodiesterase activity decreased as the intracellular cAMP levels increased. Adenylate cyclase activity was greater in cell extracts prepared from cells grown in a medium where morphogenesis was observed. Pyruvate stimulated adenylate cyclase activity in vitro. A morphogenetic mutant, able to grow only as spheres in all media tested, was shown to have altered adenylated cyclase activity, whereas no significant difference compared to the parent strain was detectable in either the phosphodiesterase activity or the levels of extracellular cAMP. The roles of the two enzymes, adenylate cyclase and phosphodiesterase, and excretion of cAMP are discussed with regard to regulation of intracellular cAMP levels and morphogenesis.  相似文献   

7.
Simulations of the roles of multiple cyclic nucleotide phosphodiesterases.   总被引:2,自引:2,他引:0  
1. Simulations were performed using a model for cellular cyclic AMP metabolism involving a hormone-activated adenylate cyclase and two cyclic nucleotide phosphodiesterases with different Michaelis constants. 2. The response curves of cyclic AMP concentration as a function of hormone concentration were affected by regulating the phosphodiesterases. The maximum velocity of the high-affinity phosphodiesterase (V1) was important in determining the position of the response curve; when v1 was less than the maximal activity of adenylate cyclase (Vc), sigmoid response curves were readily produced. The maximum attainable concentration of cyclic AMP was determined primarily by V1 when Vc less than V1, and primarily by the activity of the low-affinity enzyme when Vc greater than V1 (V2 much greater than Vc in all cases). 3. The glucagon-stimulated adenylate cyclase and insulin-stimulated phosphodiesterase of the rat liver plasma membrane were simulated using experimentally determined values for the enzyme-kinetic parameters, and a considerable potential for regulation of the system by insulin was demonstrated. 4. Other possible functions for the regulation of phosphodiesterases are considered, in particular the value of increasing the speed of response to decreases in hormone concentration.  相似文献   

8.
Adenylate cyclase and cyclic AMP (cAMP) phosphodiesterase have been identified and partially characterized in bacteroids of Bradyrhizobium japonicum 3I1b-143. Adenylate cyclase activity was found in the bacteroid membrane fraction, whereas cAMP phosphodiesterase activity was located in both the membrane and the cytosol. In contrast to other microorganisms, B. japonicum adenylate cyclase remained firmly bound to the membrane during treatment with detergents. Adenylate cyclase was activated four- to fivefold by 0.01% sodium dodecyl sulfate (SDS), whereas other detergents gave only slight activation. SDS had no effect on the membrane-bound cAMP phosphodiesterase but strongly inhibited the soluble enzyme, indicating that the two enzymes are different. All three enzymes were characterized by their kinetic constants, pH optima, and divalent metal ion requirements. With increasing nodule age, adenylate cyclase activity increased, the membrane-bound cAMP phosphodiesterase decreased, and the soluble cAMP phosphodiesterase remained largely unchanged. These results suggest that cAMP plays a role in symbiosis.  相似文献   

9.
L-Histidine and imidazole (the histidine side chain) significantly increase cAMP accumulation in intact LLC-PK1 cells. This effect is completely inhibited by isobutylmethylxanthine (IBMX). Histidine and imidazole stimulate cAMP phosphodiesterase activity in soluble and membrane fractions of LLC-PK1 cells suggesting that the IBMX-sensitive effect of these agents to stimulate cAMP formation is not due to inhibition of cAMP phosphodiesterase. Histidine and imidazole but not alanine (the histidine core structure) increase basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in LLC-PK1 membranes. Two other amino acids with charged side chains (aspartic and glutamic acids) increase AVP-stimulated but neither basal- nor forskolin-stimulated adenylate cyclase activity. This suggests that multiple amino acids with charged side chains can regulate selected aspects of adenylate cyclase activity. To better define the mechanism of histidine regulation of adenylate cyclase, membranes were detergent-solubilized which prevents histidine and imidazole potentiation of forskolin-stimulated adenylate cyclase activity and suggests that an intact plasma membrane environment is required for potentiation. Neither pertussis toxin nor indomethacin pretreatment alter imidazole potentiation of adenylate cyclase. IBMX pretreatment of LLC-PK1 membranes also prevents imidazole to potentiate adenylate cyclase activity. Since IBMX inhibits adenylate cyclase coupled adenosine receptors, LLC-PK1 cells were incubated in vitro with 5'-N-ethylcarboxyamideadenosine (NECA) which produced a homologous pattern of desensitization of NECA to stimulate adenylate cyclase activity. Despite homologous desensitization, histidine and imidazole potentiation of adenylate cyclase was unaltered. These data suggest that histidine, acting via an imidazole ring, potentiates adenylate cyclase activity and thereby increases cAMP formation in cultured LLC-PK1 epithelial cells. This potentiation requires an intact plasma membrane environment, occurs independent of a pertussis toxin-sensitive substrate and of products of cyclooxygenase, and is inhibited by IBMX. This IBMX-sensitive pathway does not involve either inhibition of cAMP phosphodiesterase activity or a stimulatory adenosine receptor coupled to adenylate cyclase.  相似文献   

10.
Cyclic AMP phosphodiesterase activity was measured in vivo after microinjection of [3H]cAMP into intact Xenopus oocytes. This activity was inhibited by extracellular application of methylxanthines, and the dose-dependent inhibition of phosphodiesterase activity correlated with the abilities of isobutylmethylxanthine and theophylline to inhibit oocyte maturation induced by progesterone, with IC50 values of approximately 0.3 and 1.5 mM, respectively. Insulin stimulated in vivo phosphodiesterase activity measured after microinjection of 200 microM [3H]cAMP in a time- and dose-dependent fashion without affecting phosphodiesterase activity measured after microinjection of 2 microM [3H]cAMP. Although progesterone alone had no effect on in vivo phosphodiesterase activity, low concentrations of progesterone (0.01 microM) accelerated the time course of insulin stimulation of both phosphodiesterase activity and oocyte maturation. The EC50 for stimulation of in vivo phosphodiesterase activity by insulin correlated with the IC50 for inhibition of oocyte membrane adenylate cyclase activity measured in vitro (2 and 4 nM, respectively). Twenty-fold higher concentrations of insulin were required to stimulate oocyte maturation. In contrast, insulin-like growth factor 1 stimulated in vivo phosphodiesterase, inhibited in vitro adenylate cyclase, and induced oocyte maturation at concentrations of 0.3-1.0 nM. These results demonstrate a dual regulation of oocyte phosphodiesterase and adenylate cyclase by insulin and insulin-like growth factor 1.  相似文献   

11.
Activation of store-operated Ca(2+) entry inhibits type 6 adenylyl cyclase (EC; AC(6); Yoshimura M and Cooper DM. Proc Natl Acad Sci USA 89: 6712-6720, 1992) activity in pulmonary artery endothelial cells. However, in lung microvascular endothelial cells (PMVEC), which express AC(6) and turn over cAMP at a rapid rate, inhibition of global (whole cell) cAMP is not resolved after direct activation of store-operated Ca(2+) entry using thapsigargin. Present studies sought to determine whether the high constitutive phosphodiesterase activity in PMVECs rapidly hydrolyzes cAMP so that Ca(2+) inhibition of AC(6) is difficult to resolve. Direct stimulation of adenylyl cyclase using forskolin and inhibition of type 4 phosphodiesterases using rolipram increased cAMP and revealed Ca(2+) inhibition of AC(6). Enzyme activity was assessed using PMVEC membranes, where Ca(2+) and cAMP concentrations were independently controlled. Endogenous AC(6) activity exhibited high- and low-affinity Ca(2+) inhibition, similar to that observed in C6-2B cells, which predominantly express AC(6). Ca(2+) inhibition of AC(6) in PMVEC membranes was observed after enzyme activation and inhibition of phosphodiesterase activity and was independent of the free cAMP concentration. Thus, under basal conditions, the constitutive type 4 phosphodiesterase activity rapidly hydrolyzes cAMP so that Ca(2+) inhibition of AC(6) is difficult to resolve, indicating that high phosphodiesterase activity works coordinately with AC(6) to regulate membrane-delimited cAMP concentrations, which is important for control of cell-cell apposition.  相似文献   

12.
Abstract Cells of B. subtilis are able to synthesize cAMP in response to oxygen limitation. Several methods were used to characterize cAMP in cell extracts. Using [3H]adenosine, cAMP synthesis could also be detected under in vivo conditions. Furthermore, activities of phosphodiesterase and adenylate cyclase were measured in extracts of B. subtilis cells and in membrane fractions. We suggest that in B. subtilis cAMP is synthesized only under special physiological conditions.  相似文献   

13.
Long-term primary adult rat hepatocyte cultures show growth-state-dependent changes in adenylate cyclase and cAMP phosphodiesterase activities. Cellular adenylate cyclase activity decreases to undetectable levels within 1 day postplating, reappears on Days 4-5, and becomes maximal on Day 9. Membrane adenylate cyclase and cellular cAMP formation are insensitive to glucagon during log phase (Days 4-8) but not during lag (Day 1) or stationary phase (Day 12). Cyclic AMP phosphodiesterase activities (soluble and particulate) fall approximately equal to 70% by Day 2 but recover as proliferation begins. By contrast, the particulate phosphodiesterase assayed at 100 microM cAMP, decreased during Days 0-2. These observations simulate changes seen during liver proliferative transitions in vivo and, therefore, further support the use of these cultures as a developmental model.  相似文献   

14.
The acrosome reaction of spermatozoa appears to be analogous to various somatic cell exocytotic events which involve cascade reactions, i.e., transmission of an external signal across the cell membrane resulting in activation of an "amplifier" enzyme and the generation of a second messenger. Using a synchronous acrosome reaction system (De Jonge et al., J. Androl., 10:232-239, '89a), it was found that analogues of the second-messenger cAMP, dibutyryl cAMP (dbcAMP) and 8-bromo cAMP, stimulated the acrosome reaction of capacitated spermatozoa. Additionally, treatment of spermatozoa with either xanthine or non-xanthine phosphodiesterase inhibitors induced a significant (P less than 0.05) increase in the percent acrosome reaction after a period of capacitation in comparison to untreated controls. These results indicate that analogues of cAMP or inhibitors which prevent cAMP hydrolysis can induce the human sperm acrosome reaction. Subsequent experiments were conducted to test whether the amplifier enzyme in the cascade reaction, adenylate cyclase, has a role in the acrosome reaction. Forskolin, an adenylate cyclase stimulator, caused a significant (P less than 0.01) increase in the percent acrosome reaction in comparison to controls. Modulators of adenylate cyclase--adenosine, 2'-0-methyladenosine, and 2',3'-dideoxyadenosine--significantly (P less than 0.01) inhibited the forskolin-induced acrosome reaction. dbcAMP was able to overcome the inhibition by adenosine. Two inhibitors of protein kinase A, the Walsh inhibitor and H-8, caused a significant (P less than 0.01) inhibition of the dbcAMP-induced acrosome reaction. Finally, in the absence of extracellular calcium, dbcAMP induced a significant (P less than 0.01) increase in the acrosome reaction in contrast to A23187. These results suggest that: 1) a molecular mechanism for the human sperm acrosome reaction involves the cAMP second-messenger system; i.e., activation of adenylate cyclase, the amplifier enzyme that produces cAMP, production of cAMP as a second messenger, and activation of cAMP-dependent kinase A; and that 2) activation of adenylate cyclase occurs after calcium influx.  相似文献   

15.
H R Masure  D R Storm 《Biochemistry》1989,28(2):438-442
Bordetella pertussis produces a calmodulin-sensitive adenylate cyclase that is associated with the whole bacteria and released into its culture media. Preparations of this enzyme invade animal cells, causing elevations in intracellular cAMP levels. Cell-associated adenylate cyclase accounted for 28% of the total adenylate cyclase activity while 72% was released into the culture supernatant. Over 90% of the cell-associated adenylate cyclase activity was sensitive to trypsin treatment of whole cells, indicating that the catalytic domain of the enzyme is localized on the outer surface of the bacterial cells. Enzyme activity was released from whole cells by treatment with SDS. This activity was resolved as a large form (Mr 215,000) by SDS-polyacrylamide gel electrophoresis. In contrast, the culture supernatant contained only the 45,000-dalton catalytic subunit. Enzyme activity released from spheroplasts by sonication was resolved into a large form (Mr 215,000) and a small form (Mr 45,000). The appearance of the small form with spheroplast formation was probably the result of proteolytic degradation. Antibodies generated against the catalytic subunit purified from culture supernatants cross-reacted with and immunoprecipitated both the large and small forms of adenylate cyclase isolated from bacterial cells. Furthermore, incubation of the cell-associated enzyme with a crude bacterial extract resulted in a time-dependent disappearance of the 215,000-dalton form and a concomitant increase in the amount of the smaller 45,000-dalton form. There was also a parallel increase in the ability of the cell-associated preparation to elevate intracellular cAMP levels in N1E-115 mouse neuroblastoma cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone.These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.  相似文献   

17.
The occurrence of cAMP, adenylate cyclase and cAMP phosphodiesterase has been tested in Pinus pinea seed during germination. The study has been carried out on dormant and imbibed seeds, seedlings, endospermic residues, roots and cotyledons. cAMP has been detected by the protein binding method and its occurrence has been verified by HPLC detections. cAMP phosphodiesterase shows a very high activity at acidic pH, while being completely inactive at pH 7.4. At this pH value, well detectable levels of adenylate cyclase have been observed. Therefore, the classical pathway of synthesis and breakdown of cAMP, already accepted for animal and bacterial cells, seems to be operating in Pinus pinea plant too.  相似文献   

18.
Calmodulin regulation of adenylate cyclase activity   总被引:8,自引:0,他引:8  
Calmodulin-dependent stimulation of adenylate cyclase was initially thought to be a unique feature of neural tissues. In recent years evidence to the contrary has accumulated, calmodulin-dependent stimulation of adenylate cyclase now being demonstrated in a wide range of structurally unrelated tissues and species. Demonstration of the existence of calmodulin-dependent adenylate cyclase has in nearly all instances required the removal of endogenous calmodulin. It is not yet clear whether calmodulin-dependent and calmodulin-independent forms of the enzyme exist and whether some tissues (such as heart) lack a calmodulin-dependent adenylate cyclase. The presence of calmodulin appears largely responsible for the ability of the adenylate cyclase enzyme to be stimulated by submicromolar concentrations of calcium; it may not be relevant to the inhibition of the enzyme which occurs at higher concentrations of calcium. The physical relationship of calmodulin to the plasma membrane bound enzyme (or to the soluble forms of the enzyme) is not known nor is the mechanism of adenylate cyclase activation by calmodulin clear; current data suggest some involvement with both the N and C units of the enzyme. Finally, it is possible that in vivo calcium contributes to the duration of the hormone stimulated cyclic AMP signal. Thus current in vitro data suggest that optimal hormonal activation of calmodulin-dependent adenylate cyclase occurs at very low intracellular calcium concentrations, comparable to those found in the resting cell; conversely the enzyme is inhibited as intracellular calcium increases, following for example agonist stimulation of the cell. These higher calcium concentrations would then activate calmodulin-dependent phosphodiesterase. Such differential effects of calcium on adenylate cyclase and phosphodiesterase would ultimately restrict the duration of the hormone-induced cyclic AMP signal.  相似文献   

19.
We have studied cAMP metabolism in rat livers undergoing carcinogenesis induced by dietary 3'-methyl-4-dimethylaminoazobenzene. A correlation between the biochemical and the histological changes described in the companion paper has been made. In this study, we saw 100% incidence of cholangiocarcinoma by 10 weeks. During weeks 1--10, the biochemistry of tumor-free areas of the livers only was studied; during weeks 11-13, the increased size of the tumors made possible a biochemical study of the tumor tissue as well as the non-tumor tissue, and a comparison between the two was made. Alterations in all parameters of cAMP metabolism were seen from the earliest stages of treatemnt. Most striking were those of adenylate cyclase activity which preceded and accompanied tumor formation, and were seen in both non-tumor and tumor tissue. In the first few weeks of treatment, small acidophilic glycogen-deficient hepatocytes appeared in the periportal areas of the liver lobules. During this time, there was an increase in maximal isoproterenol stimulation of adenylate cyclase and to a lesser extent in the basal activity of the enzyme; increases in phosphodiesterase activity were seen, and were greatest in weeks 1, 2; cAMP levels were diminished in weeks 1, 2 and slightly but not significantly elevated at week 3. From week 4 onwards an even smaller glycogen-deficient cell population appeared in perilobular areas amongst the acidophilic hepatocytes, and tumors began to appear elsewhere in the livers; at this time, there were further marked increases in the basal activity and isoproterenol responsiveness of adenylate cyclase, and the appearance of increased Gpp(NH)p responsiveness of the enzyme; the increase in phosphodiesterase activities seen at week 3 (smaller than that seen in weeks 1, 2) was sustained but did not further increase; cAMP levels were now significantly elevated also, but they did not rise steadily as did the activity of adenylate cyclase. There was a marked difference between the adenylate cyclase activities in non-tumor tissue from tumor-bearing and non-tumor-bearing livers in weeks 4--10, but there was no difference between the phosphodiesterase activities or cAMP levels in these two groups. Adenylate cyclase activity was extremely high in both non-tumor tissue of tumor-bearing livers from weeks 4--10 and tumors from weeks 11--13. Although phosphodiesterase activities were most elevated in the tumors, there were extremely high cyclic AMP levels in these tissues. The difference between the cAMP levels of tumor and non-tumor tissue was striking. Our findings are discussed with respect to the two-state model of carcinogenesis...  相似文献   

20.
S49 mouse lymphoma cells respond to swelling deformation with rapid increases in intracellular calcium and cAMP. Experiments demonstrate that these increases in calcium and cAMP concentrations are not coupled in a regulatory manner. Direct inhibition of adenylate cyclase in wild type cells with miconazole prevented swelling-induced accumulation of cAMP. No effect of swelling was observed on the activity of cAMP phosphodiesterase. Additionally, complete inhibition of cAMP phosphodiesterase did not prevent swelling-induced cAMP accumulation. Experiments involving cyc- mutants (lacking the Gs-alpha protein) and 2',5'-dideoxyadenosine indicate that increased adenylate cyclase activity with swelling is not mediated by Gs. No evidence was found for attenuation of Gi-mediated inhibition of adenylate cyclase activity following swelling. In addition, exposure to pertussis toxin or phorbol ester, which disrupts Gi inhibition of adenylate cyclase did not prevent cAMP accumulation following swelling. Disruption of the actin membrane skeleton resulted in a significant accumulation of cAMP which was not further increased by swelling. Disruption of the microtubular cytoskeleton also increased cAMP content in S49 cells which could be further increased by swelling. It is concluded that S49 cell-adenylate cyclase responds directly to mechanical forces transmitted through the actin membrane skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号