共查询到20条相似文献,搜索用时 82 毫秒
1.
Crawford A Macleod M Schumacher T Corlett L Gray D 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(6):3498-3506
B cells are well documented as APC; however, their role in supporting and programming the T cell response in vivo is still unclear. Studies using B cell-deficient mice have given rise to contradictory results. We have used mixed BM chimeric mice to define the contribution that B cells make as APC. When the B cell compartment is deficient in MHC class II, while other APC are largely normal, T cell clonal expansion is significantly reduced and the differentiation of T cells into cytokine-secreting effector cells is impaired (in particular, Th2 cells). The development of the memory T cell populations is also decreased. Although MHC class II-mediated presentation by B cells was crucial for an optimal T cell response, neither a B cell-specific lack of CD40 (influencing costimulation) nor lymphotoxin alpha (influencing lymphoid tissue architecture) had any effect on the T cell response. We conclude that in vivo B cells provide extra and essential Ag presentation capacity over and above that provided by dendritic cells, optimizing expansion and allowing the generation of memory and effector T cells. 相似文献
2.
Actin-binding protein 1 regulates B cell receptor-mediated antigen processing and presentation in response to B cell receptor activation 总被引:1,自引:0,他引:1
Onabajo OO Seeley MK Kale A Qualmann B Kessels M Han J Tan TH Song W 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(10):6685-6695
The BCR serves as both signal transducer and Ag transporter. Binding of Ags to the BCR induces signaling cascades and Ag processing and presentation, two essential cellular events for B cell activation. BCR-initiated signaling increases BCR-mediated Ag-processing efficiency by increasing the rate and specificity of Ag transport. Previous studies showed a critical role for the actin cytoskeleton in these two processes. In this study, we found that actin-binding protein 1 (Abp1/HIP-55/SH3P7) functioned as an actin-binding adaptor protein, coupling BCR signaling and Ag-processing pathways with the actin cytoskeleton. Gene knockout of Abp1 and overexpression of the Src homology 3 domain of Abp1 inhibited BCR-mediated Ag internalization, consequently reducing the rate of Ag transport to processing compartments and the efficiency of BCR-mediated Ag processing and presentation. BCR activation induced tyrosine phosphorylation of Abp1 and translocation of both Abp1 and dynamin 2 from the cytoplasm to plasma membrane, where they colocalized with the BCR and cortical F-actin. Mutations of the two tyrosine phosphorylation sites of Abp1 and depolymerization of the actin cytoskeleton interfered with BCR-induced Abp1 recruitment to the plasma membrane. The inhibitory effect of a dynamin proline-rich domain deletion mutant on the recruitment of Abp1 to the plasma membrane, coimmunoprecipitation of dynamin with Abp1, and coprecipitation of Abp1 with GST fusion of the dyanmin proline-rich domain demonstrate the interaction of Abp1 with dynamin 2. These results demonstrate that the BCR regulates the function of Abp1 by inducing Abp1 phosphorylation and actin cytoskeleton rearrangement, and that Abp1 facilitates BCR-mediated Ag processing by simultaneously interacting with dynamin and the actin cytoskeleton. 相似文献
3.
McPherson M Wei B Turovskaya O Fujiwara D Brewer S Braun J 《American journal of physiology. Gastrointestinal and liver physiology》2008,295(3):G485-G492
Deficient immunoregulation by CD4+ T cells is an important susceptibility trait for inflammatory bowel disease, but the role of other regulatory cell types is less understood. This study addresses the role and mechanistic interaction of B cells and CD8+ T cells in controlling immune-mediated colitis. The genetic requirements for B cells and CD8+ T cells to confer protective immunoregulation were assessed by cotransfer with colitogenic Galphai2-/- T cells into immune-deficient mice. Disease activity in Galphai2-/- T cell recipients was evaluated by CD4+ T intestinal lymphocyte abundance, cytokine production levels, and large intestine histology. B cells deficient in B7.1/B7.2, CD40, major histocompatibility complex (MHC) II (Abb), or native B cell antigen receptor (MD4) were competent for colitis protection. However, transporter-1-deficient B cells failed to protect, indicating a requirement for peptide MHC I presentation to CD8+ T cells. CD8+ T cells deficient in native T cell receptor repertoire (OT-1) or cytolysis (perforin-/-) also were nonprotective. These finding reveal an integrated role for antigen-specific perforin-dependent CD8+ T cell cytotoxicity in colitis immunoregulatory and its efficient induction by a subset of mesenteric B lymphocytes. 相似文献
4.
SHP-1 requires inhibitory co-receptors to down-modulate B cell antigen receptor-mediated phosphorylation of cellular substrates 总被引:2,自引:0,他引:2
Adachi T Wienands J Wakabayashi C Yakura H Reth M Tsubata T 《The Journal of biological chemistry》2001,276(28):26648-26655
Signaling through the B cell antigen receptor (BCR) is negatively regulated by the SH2 domain-containing protein-tyrosine phosphatase SHP-1, which requires association with tyrosine-phosphorylated proteins for activation. Upon BCR ligation, SHP-1 has been shown to associate with the BCR, the cytoplasmic protein-tyrosine kinases Lyn and Syk, and the inhibitory co-receptors CD22 and CD72. How SHP-1 is activated by BCR ligation and regulates BCR signaling is, however, not fully understood. Here we demonstrate that, in the BCR-expressing myeloma line J558L mu 3, CD72 expression reduces the BCR ligation-induced phosphorylation of the BCR component Ig alpha/Ig beta and its cytoplasmic effectors Syk and SLP-65. Substrate phosphorylation was restored by expression of dominant negative mutants of SHP-1, whereas the SHP-1 mutants failed to enhance phosphorylation of the cellular substrates in the absence of CD72. This indicates that SHP-1 is efficiently activated by CD72 but not by other pathways in J558L mu m3 cells and that inhibition of SHP-1 specifically activated by CD72 reverses CD72-induced dephosphorylation of cellular substrates in these cells. Taken together, BCR-induced SHP-1 activation is likely to require inhibitory co-receptors such as CD72, and SHP-1 appears to mediate the negative regulatory effect of CD72 on BCR signaling by dephosphorylating Ig alpha/Ig beta and its downstream signaling molecules Syk and SLP-65. 相似文献
5.
Zwitterionic polysaccharide antigens (ZPSs) were recently shown to activate T cells in a class II major histocompatibility complex (MHCII)-dependent fashion requiring antigen presenting cell (APC)-mediated oxidative processing although little is known about the mechanism or affinity of carbohydrate presentation (Cobb BA, Wang Q, Tzianabos AO, Kasper DL. 2004. Polysaccharide processing and presentation by the MHCII pathway. Cell. 117:677-687). A recent study showed that the helical conformation of ZPSs (Wang Y, Kalka-Moll WM, Roehrl MH, Kasper DL. 2000. Structural basis of the abscess-modulating polysaccharide A2 from Bacteroides fragilis. Proc Natl Acad Sci USA. 97:13478-13483; Choi YH, Roehrl MH, Kasper DL, Wang JY. 2002. A unique structural pattern shared by T-cell-activating and abscess-regulating zwitterionic polysaccharides. Biochemistry. 41:15144-15151) is closely linked with immunogenic activity (Tzianabos AO, Onderdonk AB, Rosner B, Cisneros RL, Kasper DL. 1993. Structural features of polysaccharides that induce intra-abdominal abscesses. Science. 262:416-419) and is stabilized by a zwitterionic charge motif (Kreisman LS, Friedman JH, Neaga A, Cobb BA. 2007. Structure and function relations with a T-cell-activating polysaccharide antigen using circular dichroism. Glycobiology. 17:46-55), suggesting a strong carbohydrate structure-function relationship. In this study, we show that PSA, the ZPS from Bacteroides fragilis, associates with MHCII at high affinity and 1:1 stoichiometry through a mechanism mirroring peptide presentation. Interestingly, PSA binding was mutually exclusive with common MHCII antigens and showed significant allelic differences in binding affinity. The antigen exchange factor HLA-DM that catalyzes peptide antigen association with MHCII also increased the rate of ZPS association and was required for APC presentation and ZPS-mediated T cell activation. Finally, the zwitterionic nature of these antigens was required only for MHCII binding, and not endocytosis, processing, or vesicular trafficking to MHCII-containing vesicles. This report is the first quantitative analysis of the binding mechanism of carbohydrate antigens with MHCII and leads to a novel model for nontraditional MHCII antigen presentation during bacterial infections. 相似文献
6.
Basal Igalpha/Igbeta signals trigger the coordinated initiation of pre-B cell antigen receptor-dependent processes 总被引:2,自引:0,他引:2
Fuentes-Pananá EM Bannish G Shah N Monroe JG 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(2):1000-1011
The pro-B to pre-B transition during B cell development is dependent upon surface expression of a signaling competent pre-B cell Ag receptor (pre-BCR). Although the mature form of the BCR requires ligand-induced aggregation to trigger responses, the requirement for ligand-induced pre-BCR aggregation in promoting B cell development remains a matter of significant debate. In this study, we used transmission electron microscopy on murine primary pro-B cells and pre-B cells to analyze the aggregation state of the pre-BCR. Although aggregation can be induced and visualized following cross-linking by Abs to the pre-BCR complex, our analyses indicate that the pre-BCR is expressed on the surface of resting cells primarily in a nonaggregated state. To evaluate the degree to which basal signals mediated through nonaggregated pre-BCR complexes can promote pre-BCR-dependent processes, we used a surrogate pre-BCR consisting of the cytoplasmic regions of Igalpha/Igbeta that is targeted to the inner leaflet of the plasma membrane of primary pro-B cells. We observed enhanced proliferation in the presence of low IL-7, suppression of V(H)(D)J(H) recombination, and induced kappa light (L) chain recombination and cytoplasmic kappa L chain protein expression. Interestingly, Igalpha/Igbeta-mediated allelic exclusion was restricted to the B cell lineage as we observed normal TCRalphabeta expression on CD8-expressing splenocytes. This study directly demonstrates that basal signaling initiated through Igalpha/Igbeta-containing complexes facilitates the coordinated control of differentiation events that are associated with the pre-BCR-dependent transition through the pro-B to pre-B checkpoint. Furthermore, these results argue that pre-BCR aggregation is not a requirement for pre-BCR function. 相似文献
7.
8.
C D Myers 《FASEB journal》1991,5(11):2547-2553
In the 25 years since it was first indicated that lymphocyte subpopulations must interact during the generation of a humoral immune response, there has been an explosion of data on the molecular mechanism of this interaction. It has been demonstrated that T cells recognize a processed antigen fragment presented by a major histocompatibility complex molecule on the surface of an antigen-presenting cell. The minimal peptides required for T cell recognition of several proteins have been determined, the molecular genetics of many of the cell surface molecules involved have been defined, and the three-dimensional structure of the T cell receptor and the major histocompatibility antigens have been deduced. Several cell types have been found to act as antigen-presenting cells, although the roles of these populations in vivo remain unclear. However, it is clear that there must be a physical interaction between a B cell and a T cell before the B cell can respond to a T-dependent antigen. This interaction requires processing and presentation of the antigen by the B cell. Therefore this review focuses on antigen processing and presentation by resting B cells, one of the key steps in initiation of a humoral immune response. 相似文献
9.
Blois JT Mataraza JM Mecklenbraüker I Tarakhovsky A Chiles TC 《The Journal of biological chemistry》2004,279(29):30123-30132
The cAMP-response element-binding protein (CREB) is activated by phosphorylation on Ser-133 and plays a key role in the proliferative and survival responses of mature B cells to B cell receptor (BCR) signaling. The signal link between the BCR and CREB activation depends on a phorbol ester (phorbol 12-myristate 13-acetate)-sensitive protein kinase C (PKC) activity and not protein kinase A or calmodulin kinase; however, the identity and role of the PKC(s) activity has not been elucidated. We found the novel PKCdelta (nPKCdelta) activator bistratene A is sufficient to induce CREB phosphorylation in murine splenic B cells. The pharmacological inhibitor G?6976, which targets conventional PKCs and PKCmu, has no effect on CREB phosphorylation, whereas the nPKCdelta inhibitor rottlerin blocks CREB phosphorylation following BCR cross-linking. Bryostatin 1 selectively prevents nPKCdelta depletion by phorbol 12-myristate 13-acetate when coapplied, coincident with protection of BCR-induced CREB phosphorylation. Ectopic expression of a kinase-inactive nPKCdelta blocks BCR-induced CREB phosphorylation in A20 B cells. In addition, BCR-induced CREB phosphorylation is significantly diminished in nPKCdelta-deficient splenic B cells in comparison with wild type mice. Consistent with the essential role for Bruton's tyrosine kinase and phospholipase Cgamma2 in mediating PKC activation, Bruton's tyrosine kinase- and phospholipase Cgamma2-deficient B cells display defective CREB phosphorylation by the BCR. We also found that p90 RSK directly phosphorylates CREB on Ser-133 following BCR cross-linking and is positioned downstream of nPKCdelta. Taken together, these results suggest a model in which BCR engagement leads to the phosphorylation of CREB via a signaling pathway that requires nPKCdelta and p90 RSK in mature B cells. 相似文献
10.
Accessory cell stimulation of T cell proliferation requires active antigen processing, Ia-restricted antigen presentation, and a separate nonspecific 2nd signal 总被引:12,自引:0,他引:12
R N Germain 《Journal of immunology (Baltimore, Md. : 1950)》1981,127(5):1964-1966
The roles of Ia+ accessory cells in H-2-restricted stimulation of antigen-specific T cell proliferation were explored in an in vitro model. L-glutamic acid60-L-alanine30-L-tyrosine10-(GAT) primed BALB/c nylon wool-passed T cells were depleted of Ia+ antigen-presenting cells (APC) by treatment with monoclonal anti-Ia antibody plus complement. Such cells failed to respond to soluble GAT, or to soluble GAT in the presence of phorbol myristic acetate (PMA), which is known to stimulate production of, or replace, IL-1 in vitro. Addition of gamma-irradiated syngeneic spleen cells reconstituted the response to soluble GAT, but addition of ultraviolet (UV) light-irradiated spleen cells did not, even in the presence of PMA. Preincubation of cells with GAT for 24 hr, followed by washing, then gamma irradiation, generated a cell population able to stimulate GAT-primed T cells to proliferate. The same pulsed cells exposed to UV irradiation failed to stimulate T cell responses unless PMA was added to the cultures. The relevant cells in this UV-irradiated population are Ia+. It is concluded that a finite period of time for interaction of metabolically intact APC with antigen is required before creation of an appropriate (Ia + antigen) signal recognized by the T cell. In addition to such Ia-restricted antigen presentation, however, a 2nd nonspecific signal, again requiring metabolically active APC for elaboration, is necessary for detectable T cell activation. These studies thus define 3 separable activities of APC during the process of H-2 restricted T cell activation. 相似文献
11.
Antibody conjugates mimic specific B cell presentation of antigen: relationship between T and B cell specificity 总被引:12,自引:0,他引:12
We developed antibody conjugates by covalently coupling antibodies against mouse mu-chain and monoclonal antibodies against nominal antigen, myoglobin, as a tool for antigen presentation and as a model of specific presentation of antigen by antigen-specific B cells and T-B interaction. In the presence of the antibody conjugates, myoglobin-specific Iad-restricted cloned T cells proliferated at 1000-fold lower concentration of myoglobin than the stimulatory concentration without the conjugates. This enhanced presentation was observed only when Iad spleen cells were 1000 R-irradiated but not 3300 R-irradiated, consistent with B cell presentation. The simple mixture of each component of the conjugates had no enhancement effects. The conjugates per se had no mitogenic effects on either splenic B cells or the cloned T cells at concentrations employed for antigen presentation. The conjugates reduced the number of antigen-presenting cells required for the maximal response but did not change the kinetics of response. The enhanced presentation by the conjugates required a genetically restricted interaction with B cells. Antigen specificity of the enhanced presentation was confirmed by using various T cell clones or lines with different antigen specificities and different conjugates constructed with monoclonal antibodies of known epitope specificity. The enhanced presentation was significantly inhibited by competition with exogenous mouse IgM or anti-mouse mu-chain but was not significantly inhibited by monoclonal antibodies against Fc receptor. Thus, conjugate-coated B cells serve as models for myoglobin-specific B cells in that they can take up specific antigens at extremely low concentration and can present the antigen to specific T cells. This model system can be applied to any antigen and any species without the need to develop antigen-specific B cell clones, which is not yet possible for most antigens and species of experimental animals. This system allowed us to investigate the relationship between T cell epitope and B cell epitope when these cells interact with each other in an antigen-specific and Ia-restricted manner. Experiments using antibody conjugates of different monoclonal antibodies against myoglobin and various myoglobin-specific cloned T cells of known antigen specificity revealed that there are some particular combinations in which much more limited enhancement of antigen presentation is observed.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
12.
Roget K Malissen M Malbec O Malissen B Daëron M 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(6):3689-3698
The linker for activation of T cells (LAT) and the non-T cell activation linker (NTAL) are two transmembrane adapters which organize IgE receptor (FcepsilonRI) signaling complexes in mast cells. LAT positively regulates, whereas NTAL negatively regulates mast cell activation. We previously found that the four distal tyrosines of LAT can generate negative signals. We show here that two of these tyrosines provide two binding sites for SHIP1, that LAT recruits SHIP1 in vivo, and that SHIP1 recruitment is enhanced in NTAL-deficient cells. We show that NTAL negatively regulates mast cell activation by decreasing the recruitment, by LAT, of molecules involved in FcepsilonRI-dependent positive signaling. We show that NTAL also decreases the recruitment of SHIP1 by LAT, leading to an increased phosphorylation of the antiapoptotic molecule Akt, and positively regulates mast cell survival. We finally show that the positive effect of NTAL on Akt phosphorylation and mast cell survival requires LAT. Our data thus document the mechanisms by which LAT and NTAL can generate both positive and negative signals which differentially regulate mast cell activation and survival. They also provide molecular bases for the recruitment of SHIP1 in FcepsilonRI signaling complexes. SHIP1 is a major negative regulator of mast cell activation and, hence, of allergic reactions. 相似文献
13.
Chatterjee P Tiwari RK Rath S Bal V George A 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(6):2695-2702
Binding of Ag by B cells leads to signal transduction downstream of the BCR and to delivery of the internalized Ag-BCR complex to lysosomes where the Ag is processed and presented on MHC class II molecules. T cells that recognize the peptide-MHC complexes provide cognate help to B cells in the form of costimulatory signals and cytokines. Recruitment of T cell help shapes the Ab response by facilitating isotype switching and somatic hypermutation, and promoting the generation of memory cells and long-lived plasma cells. We have used the beige (Bg) mouse, which is deficient in endosome biogenesis, to evaluate the effect of potentially altered Ag presentation in shaping the humoral response. We show that movement of the endocytosed Ag-BCR complex to lysosomes is delayed in Bg B cells and leads to relatively poorer stimulation of Ag-specific T cells. Nevertheless, this does not affect Bg B cell activation or proliferation when competing with wild-type B cells for limiting T cell help in vitro. Interestingly, Bg B cells show more prolonged phosphorylation of signaling intermediates after BCR ligation and proliferate better to low levels of BCR cross-linking. Primary Ab responses are similar in both strains, but memory responses and plasma cell frequencies in bone marrow are higher in Bg mice. Further, Bg B cells mount a higher primary Ab response when competing with wild-type cells in vivo. Thus, the intensity and duration of BCR signaling may play a more important part in shaping B cell responses than early Ag presentation for T cell help. 相似文献
14.
T Kakiuchi A Takatsuki M Watanabe H Nariuchi 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(10):3289-3295
We have shown previously that specific Ag presentation is prevented by the inhibition of protein synthesis but nonspecific presentation is not. In the present paper, Ag presentation by Ag-specific B cells was examined for sensitivity to brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum. A20-HL B lymphoma expressing surface receptors specific for TNP was used as a B cell, and TNP-OVA was used as a specific Ag. The presence of BFA during pulsing of A20-HL cells with TNP-OVA inhibited the ability of the pulsed cells to stimulate 42-6A T cell clone, specific for OVA323-339 and Iad. The inhibition was not due to nonspecific toxicity of BFA, because the presence of BFA during pulsing of A20-HL cells with OVA323-339 did not affect their APC function. Ag binding to the receptor on A20-HL cells and internalization by the cells were observed in the presence of BFA. Thus, BFA might inhibit intracellular processing of specific Ag or intracellular complex formation of antigenic peptide from specific Ag with MHC class II molecules. Nonspecific Ag presentation by A20-HL cells, however, was resistant to BFA. A20-HL cells pulsed with OVA in the presence of BFA, even after fixation, could stimulate 42-6A cells to produce IL-2, although the IL-2 production was lower than that induced by A20-HL cells pulsed in the absence of BFA. These results suggest that the processing pathways for specific Ag and nonspecific Ag are different from each other, at least partly, in A20-HL cells. 相似文献
15.
Al-Alwan MM Okkenhaug K Vanhaesebroeck B Hayflick JS Marshall AJ 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(4):2328-2335
The BCR serves to both signal cellular activation and enhance uptake and presentation of Ags by B cells; however, the intracellular signaling mechanisms linking the BCR to Ag presentation functions have been controversial. PI3Ks are critical signaling enzymes controlling many cellular processes, with the p110delta isoform playing a critical role in BCR signaling. In this study, we used pharmacological and genetic approaches to evaluate the role of p110delta signaling in Ag presentation by primary B lymphocytes. It was found that activation of allogeneic T cells is significantly reduced when B cells are pretreated with global PI3K inhibitors, but was intact when p110delta signaling was specifically inactivated. In contrast, inactivation of p110delta significantly impaired the ability of B cells to activate T cells in a BCR-mediated Ag uptake and presentation model. Prestimulation of p110delta-inactivated B cells with anti-CD40 or LPS could not rescue their BCR-mediated Ag presentation ability to normal levels. p110delta signaling was required for efficient presentation of either anti-Ig or protein Ag via a lysozyme-specific BCR. p110delta-inactivated B cells were able to internalize Ag normally, and no defects in association of Ag with lysosome-associated membrane protein 1(+) late endosomes were observed; however, these cells were less effective in forming polarized conjugates with Ag-specific T cells. Our data demonstrate a role for p110delta signaling in B cell Ag presentation function, implicating 3-phosphoinositides and their targets in the latter stages of this process. 相似文献
16.
Glycolipid-enriched membrane (GEM) domains, or lipid rafts, function in signaling in immune cells, but their properties during Ag presentation are less clear. To address this question, GEM domains were studied using fluorescence cell imaging of mouse CH27 B cells presenting Ag to D10 T cells. Our experiments showed that APCs were enriched with GEM domains in the immune synapse, and this occurred in an actin-dependent manner. This enrichment was specific to GEM domains, because a marker for non-GEM regions of the membrane was excluded from the immune synapse. Furthermore, fluorescence photobleaching experiments showed that protein in the immune synapse was dynamic and rapidly exchanged with that in other compartments of CH27 cells. To identify the signals for targeting GEM domains to the immune synapse in APCs, capping of the domains was measured in cells after cross-linking surface molecules. This showed that co-cross-linking CD48 with MHC class II was required for efficient capping and intracellular signaling. Capping of GEM domains by co-cross-linking CD48 and MHC class II occurred with co-capping of filamentous actin, and both domain capping and T cell-CH27 cell conjugation were inhibited by pretreating CH27 cells with latrunculin B. Furthermore, disruption of the actin cytoskeleton of the CH27 cells also inhibited formation of a mature immune synapse in those T cells that did conjugate to APCs. Thus, Ag presentation and efficient T cell stimulation occur by an actin-dependent targeting of GEM domains in the APC to the site of T cell engagement. 相似文献
17.
To determine which early and intermediate events in the response of antigen-binding B cells to a T-dependent antigen (sheep erythrocytes [SRC]) require T help, the antigen-induced changes in receptor turnover and surface IgD loss in BALB/c athymic nu/nu mice were compared with that of nu/+ littermates and +/+ BALB/c mice. Nonimmune SRC antigen-binding spleen B cells (ABC) from +/+, nu/+, and nu/nu BALB/c mice coexpressed IgM and IgD, and 85 to 95% retained receptors well when incubated for 2.5 hr in 100 micrograms/ml cycloheximide (which prevents receptor replacement). Also they were able to regain their ability to bind antigen by 18 hr after pronase treatment, but not by 2 hr. However, 5 days after in vivo immunization, 1) the proportion of ABC expressing surface IgD declined from around 90% to less than 50% in +/+ mice and nu/+ mice but not in nu/nu mice; 2) substantial recovery of antigen-binding occurred by 2 hr after pronase treatment in +/+ and nu/+ ABC but not in nu/nu ABC; and 3) when spleen cells were incubated in cycloheximide, uncompensated receptor shedding reduced +/+ and nu/+ ABC by around 80% but produced only about a 10% reduction in nu/nu ABC. Thus, although the ABC in nonimmune nu/nu mice appeared normal with respect to their surface Ig turnover and expression, they failed to undergo the normal antigen-induced loss of IgD or acceleration of surface Ig shedding and replacement, suggesting that these intermediate activation events require interaction with mature T cells. To determine whether this interaction had to occur during B cell development, during the development of the immune response, or during receptor shedding or replacement itself, cell transfer experiments were carried our wherein nu/+ T cells were transferred i.v. to nu/nu littermates 1 day before immunization with SRC. In the transfer recipients, pronase-treated day 5 ABC were then able to replace and shed their receptors at the accelerated rate, like ABC from +/+ and nu/+ mice. In contrast, the co-incubation of 5-day immune nu/+ T cells with nu/nu B cells did not alter the rate of shedding or replacement. 相似文献
18.
Regulation of RasGRP1 by B cell antigen receptor requires cooperativity between three domains controlling translocation to the plasma membrane 下载免费PDF全文
Beaulieu N Zahedi B Goulding RE Tazmini G Anthony KV Omeis SL de Jong DR Kay RJ 《Molecular biology of the cell》2007,18(8):3156-3168
RasGRP1 is a Ras-activating exchange factor that is positively regulated by translocation to membranes. RasGRP1 contains a diacylglycerol-binding C1 domain, and it has been assumed that this domain is entirely responsible for RasGRP1 translocation. We found that the C1 domain can contribute to plasma membrane-targeted translocation of RasGRP1 induced by ligation of the B cell antigen receptor (BCR). However, this reflects cooperativity of the C1 domain with the previously unrecognized Plasma membrane Targeter (PT) domain, which is sufficient and essential for plasma membrane targeting of RasGRP1. The adjacent suppressor of PT (SuPT) domain attenuates the plasma membrane-targeting activity of the PT domain, thus preventing constitutive plasma membrane localization of RasGRP1. By binding to diacylglycerol generated by BCR-coupled phospholipase Cgamma2, the C1 domain counteracts the SuPT domain and enables efficient RasGRP1 translocation to the plasma membrane. In fibroblasts, the PT domain is inactive as a plasma membrane targeter, and the C1 domain specifies constitutive targeting of RasGRP1 to internal membranes where it can be activated and trigger oncogenic transformation. Selective use of the C1, PT, and SuPT domains may contribute to the differential targeting of RasGRP1 to the plasma membrane versus internal membranes, which has been observed in lymphocytes and other cell types. 相似文献
19.
The cell biology of antigen presentation. 总被引:4,自引:0,他引:4
20.
Hepatitis B virus envelope glycoproteins Large (L), Middle (M) and Small (S) are targets of the host cellular immune system. The extent to which the host recognizes viral antigens presented by infected cells is believed to play a decisive role in determining if an infection will be resolved or become chronic. As with other antigens, HBV envelope polypeptides must be degraded, presumably by cellular proteasomes, to be presented by the MHC I pathway. We have used M as a model to study this process and determine how ER quality control monitors these foreign polymeric proteins and disposes of them through the ER-associated degradation (ERAD) pathway. Using both wild type and mutant HBV M protein, we found that unlike most ERAD substrates, which require ubiquitination for retrotranslocation and degradation, the HBV M protein, which only contains two lysine residues, can undergo rapid and complete, ubiquitin independent, proteasome dependent degradation. The utilization of this pathway had a functional consequence, since proteins degraded through it, were poorly presented via MHC I. To test the hypothesis that the level of ubiquitination, independent of protein degradation, controls the level of antigen presentation, we inserted two additional lysines into both the wild type and mutant M protein. Amazingly, while the addition of the lysine residues dramatically increased the level of ubiquitination, it did not alter the rate of degradation. However and remarkably, the increased ubiquitination was associated with a dramatic increase in the level of antigen presentation. In conclusion, using the HBV surface protein as a model, we have identified a novel ubiquitin independent degradation pathway and determined that this pathway can have implications for antigen presentation and potentially viral pathogenesis. 相似文献