首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligament balancing during total knee replacement (TKR) is receiving increased attention due to its influence on resulting joint kinematics and laxity. We employed a novel in vitro technique to measure the kinematics and laxity of TKR implants during gait, and measured how these characteristics are influenced by implant shape and soft tissue balancing, simulated using virtual ligaments. Compared with virtual ligaments that were equally balanced in flexion and extension, the largest changes in stance-phase tibiofemoral AP and IE kinematics occurred when the virtual ligaments were simulated to be tighter in extension (tibia offset 1.0 ± 0.1 mm posterior and 3.6 ± 0.1° externally rotated). Virtual ligaments which were tight in flexion caused the largest swing-phase changes in AP kinematics (tibia offset 2.3 ± 0.2 mm), whereas ligaments which were tight in extension caused the largest swing-phase changes in IE kinematics (4.2 ± 0.1° externally rotated). When AP and IE loads were superimposed upon normal gait loads, incremental changes in AP and IE kinematics occurred (similar to laxity testing); and these incremental changes were smallest for joints with virtual ligaments that were tight in extension (in both the stance and swing phases). Two different implant designs (symmetric versus medially congruent) exhibited different kinematics and sensitivities to superimposed loads, but demonstrated similar responses to changes in ligament balancing. Our results demonstrate the potential for pre-clinical testing of implants using joint motion simulators with virtual soft tissues to better understand how ligament balancing affects implant motion.  相似文献   

2.
Several strains of cytophaga-like gliding bacteria (CLB) were isolated as numerically dominant or codominant components of bacterial populations associated with proteinaceous hinge ligaments of cultured juvenile Pacific oysters, Crassostrea gigas. These bacteria were morphologically similar to long, flexible bacilli occurring within degenerative lesions in oyster hinge ligaments. Among bacteria isolated from hinge ligaments, only CLB strains were capable of sustained growth with hinge ligament matrix as the sole source of organic carbon and nitrogen. In vitro incubation of cuboidal portions of ligament resilium with ligament CLB resulted in bacterial proliferation on the surfaces and penetration deep into ligament matrices. Bacterial proliferation was accompanied by loss of resilium structural and mechanical integrity, including complete liquefaction, at incubation temperatures between 10 and 20 degrees C. The morphological, distributional, and degradative characteristics of CLB isolated from oyster hinge ligaments provide compelling, albeit indirect, evidence that CLB are the agents of a degenerative disease affecting juvenile cultured oysters. The motility, metabolic, and hydrolytic characteristics of hinge ligament CLB and the low moles percent G + C values (32.4 to 32.9) determined for three representative strains indicate that they are marine Cytophaga spp.  相似文献   

3.
Several strains of cytophaga-like gliding bacteria (CLB) were isolated as numerically dominant or codominant components of bacterial populations associated with proteinaceous hinge ligaments of cultured juvenile Pacific oysters, Crassostrea gigas. These bacteria were morphologically similar to long, flexible bacilli occurring within degenerative lesions in oyster hinge ligaments. Among bacteria isolated from hinge ligaments, only CLB strains were capable of sustained growth with hinge ligament matrix as the sole source of organic carbon and nitrogen. In vitro incubation of cuboidal portions of ligament resilium with ligament CLB resulted in bacterial proliferation on the surfaces and penetration deep into ligament matrices. Bacterial proliferation was accompanied by loss of resilium structural and mechanical integrity, including complete liquefaction, at incubation temperatures between 10 and 20 degrees C. The morphological, distributional, and degradative characteristics of CLB isolated from oyster hinge ligaments provide compelling, albeit indirect, evidence that CLB are the agents of a degenerative disease affecting juvenile cultured oysters. The motility, metabolic, and hydrolytic characteristics of hinge ligament CLB and the low moles percent G + C values (32.4 to 32.9) determined for three representative strains indicate that they are marine Cytophaga spp.  相似文献   

4.
5.
David Peters 《Ichnos》2013,20(1):11-41
A previously unnoticed geometric pattern is present in the extremities of all tetrapods. Sets of straight and typically uninterrupted hinge lines pass through neighboring interphalangeal joints and across ungual tips. Four sets of these lines appear in basal polydactyl tetrapods, two medial sets, a transverse set and a lateral set. The two medial sets merge in primitive pentadactyl tetrapods. The resulting three line sets persist in later taxa, even when digits shrink and disappear. Primitively and typically the lines in each set are more or less parallel, but lines may converge, merge and shift as phalanges disappear or phalangeal proportions change. Confirming this geometric pattern, complex interphalangeal joint surfaces typically align with hinge lines and pad divisions parallel them. In addition, unguals rarely cross extensions of hinge lines and longer unguals may divert medially or laterally rather than cross them. Exceptions occur most commonly on ungual II. Line sets may exist because phalanges appear to flex and extend most efficiently in unison. Hinge line patterns appear to identify clades so they may, to a limited extent, be used taxonomically. Hinge lines also have predictive value in that missing phalanges, including unguals, can be reconstructed with confidence using hinge lines as size guides. Correct digit spread and metapodial configuration can also be determined in extinct taxa by seeking the appearance of continuous interphalangeal hinge lines in tested reconstructions.  相似文献   

6.
Embryonal development of the spinal column cervical part has been studied in 100 series of sagittal, transversal, frontal sections; time of the main structural elements anlagen (vertebral bodies, arches, joints, ligaments) is noted. The prenatal development of the spinal column cervical part is divided into 3 stages--mesenchymal, cartilagenous, osseous. The first stage lasts up to 16 days of development; during this period anlagen of vertebral bodies, arches, joints, ligaments are formed. The second stage--cartilagenous; mesenchyma is substituted for cartilagenous tissue, cartilagenous cells are differentiated. This stage lasts from the 16th up to the 18th day of embryogenesis. The third stage--osseous--lasts from the 18th up to the 21st day of embryogenesis. During this period structures of the spinal column cervical part acquire a definitive form, the cartilagenous tissue is substituted for the osseous one.  相似文献   

7.
In the present study the stiffness of the superficial ligaments of 14 human cadaver wrist joints have been determined. In these experiments the tested, fresh-frozen carpal joints are divided into a number of bone-ligament-bone complexes, which are loaded in a tensile testing machine at a rate of 66% of the ligaments' initial length per second to a maximal strain of 15%. From the force-elongation curves and ligament dimensions the tangent moduli for the ligament-bone strips are derived. The results show that, with regard to the tangent modulus, there is not a clear differentiation among ligament strips. Only the dorsal radiotriquetrum ligament (RTD) and the palmar radiocapitate ligament (RCP) appear to consist of a material of a relatively high tangent modulus, about 93 and 83 MPa, respectively. The other seven ligaments tested have similar tangent moduli, ranging from 25 to about 50 MPa.  相似文献   

8.
A three-dimensional study of the kinematics of the human knee   总被引:6,自引:0,他引:6  
This paper represents a three-dimensional study of the human knee-joint and studies kinematic effects of the cruciate ligaments. Two methods were used for our studies, one method was preferred. This method used a time lapse photograph and strobe light to give us a plot of reference points to carry out our analysis using the method of Rouleaux applied to three dimensions. Five cadaver joints were used, each of which was used for three series of experiments, including the joint with capsule intact, with one of the ligaments cut and with the remaining ligament cut. Both lateral and medial studies were conducted to provide data for a three-dimensional study.

It was found that the cruciate ligaments had little effect on the kinematics of the knee, and that the knee motion remained unchanged after cutting one or both of the cruciate ligaments. It was concluded that the motion of the knee was due to the geometry of the bones and perhaps the collateral ligaments, and that the joint could be replaced with a prosthesis having a three dimensional axis of rotation with a fixed center.  相似文献   


9.
A three-dimensional model of the lower limb containing 47 muscles was developed to study the differences between a two- and three-dimensional approach for determining internal loads, the role of the dynamic joint representation, and the behavior of different load-bearing criteria in walking and running. The problem of redundancy of the musculo-skeletal system was resolved by applying inverse dynamics and static optimization methods. Different hypothetical load-bearing capabilities of hinge, spherical and intermediate joint types for the knee and the ankle joints were tested. It was found that even almost planar movements such as walking and running are associated with significant three-dimensional intersegment moments, especially in the frontal plane. Thus, a two-dimensional approach may underestimate internal loads up to 60%. It is shown that pure hinge joints are inappropriate for modeling the dynamical joint function of the knee and ankle joints. A more flexible joint representation in combination with a squared muscle stress minimization criterion predicted a lot of synergistic as well as antagonistic muscle activation which was also found in the EMG patterns. The results indicate the importance of muscular joint stabilization in natural human movements. Compared to in vivo measurements it is speculated that the predicted force magnitudes are considerably overestimated due to error propagation and still insufficient anatomical models. Thus, increased efforts to improve further the reliability of internal load calculations should be made in the future.  相似文献   

10.
The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young''s modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young''s modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation () was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.  相似文献   

11.
Based on musculoskeletal anatomy of the lower back, abdominal wall, pelvis and upper legs, a biomechanical model has been developed on forces in the load transfer through the pelvis. The aim of this model is to obtain a tool for analyzing the relations between forces in muscles, ligaments and joints in the transfer of gravitational and external load from the upper body via the sacroiliac joints to the legs in normal situations and pathology. The study of the relation between muscle coordination patterns and forces in pelvic structures, in particular the sacroiliac joints, is relevant for a better understanding of the aetiology of low back pain and pelvic pain. The model comprises 94 muscle parts, 6 ligaments and 6 joints. It enables the calculation of forces in pelvic structures in various postures. The calculations are based on a linear/non-linear optimization scheme. To gain a better understanding of the function of individual muscles and ligaments, deviant properties of these structures can be preset. The model is validated by comparing calculations with EMG data from the literature. For agonistic muscles, good agreement is found between model calculations and EMG data. Antagonistic muscle activity is underestimated by the model. Imposed activity of modelled antagonistic muscles has a minor effect on the mutual proportions of agonistic muscle activities. Simulation of asymmetric muscle weakness shows higher activity of especially abdominal muscles.  相似文献   

12.
FlexProt is a novel technique for the alignment of flexible proteins. Unlike all previous algorithms designed to solve the problem of structural comparisons allowing hinge-bending motions, FlexProt does not require an a priori knowledge of the location of the hinge(s). FlexProt carries out the flexible alignment, superimposing the matching rigid subpart pairs, and detects the flexible hinge regions simultaneously. A large number of methods are available to handle rigid structural alignment. However, proteins are flexible molecules, which may appear in different conformations. Hence, protein structural analysis requires algorithms that can deal with molecular flexibility. Here, we present a method addressing specifically a flexible protein alignment task. First, the method efficiently detects maximal congruent rigid fragments in both molecules. Transforming the task into a graph theoretic problem, our method proceeds to calculate the optimal arrangement of previously detected maximal congruent rigid fragments. The fragment arrangement does not violate the protein sequence order. A clustering procedure is performed on fragment-pairs which have the same 3-D rigid transformation regardless of insertions and deletions (such as loops and turns) which separate them. Although the theoretical worst case complexity of the algorithm is O(n(6)), in practice FlexProt is highly efficient. It performs a structural comparison of a pair of proteins 300 amino acids long in about seven seconds on a standard desktop PC (400 MHz Pentium II processor with 256MB internal memory). We have performed extensive experiments with the algorithm. An assortment of these results is presented here. FlexProt can be accessed via WWW at bioinfo3d.cs.tau.ac.il/FlexProt/.  相似文献   

13.
HIV-1 (human immunodeficiency virus type 1) uses its trimeric gp160 envelope (Env) protein consisting of non-covalently associated gp120 and gp41 subunits to mediate entry into human T lymphocytes. A facile virus fusion mechanism compensates for the sparse Env copy number observed on viral particles and includes a 22-amino-acid, lentivirus-specific adaptation at the gp41 base (amino acid residues 662–683), termed the membrane proximal external region (MPER). We show by NMR and EPR that the MPER consists of a structurally conserved pair of viral lipid-immersed helices separated by a hinge with tandem joints that can be locked by capping residues between helices. This design fosters efficient HIV-1 fusion via interconverting structures while, at the same time, affording immune escape. Disruption of both joints by double alanine mutations at Env positions 671 and 674 (AA) results in attenuation of Env-mediated cell–cell fusion and hemifusion, as well as viral infectivity mediated by both CD4-dependent and CD4-independent viruses. The potential mechanism of disruption was revealed by structural analysis of MPER conformational changes induced by AA mutation. A deeper acyl chain-buried MPER middle section and the elimination of cross-hinge rigid-body motion almost certainly impede requisite structural rearrangements during the fusion process, explaining the absence of MPER AA variants among all known naturally occurring HIV-1 viral sequences. Furthermore, those broadly neutralization antibodies directed against the HIV-1 MPER exploit the tandem joint architecture involving helix capping, thereby disrupting hinge function.  相似文献   

14.
The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2–C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.  相似文献   

15.
A theoretical study is made of the propagation of a packet of surface electromagnetic waves with a zero axial wavenumber in a circular-cross-section cylindrical metal waveguide partially filled with plasma in an axial magnetic field. The cross section of the plasma column is assumed to be noncircular. The effect of the noncircular shape of the plasma cross section on the dispersion properties of azimuthal surface modes is investigated by the method of successive approximations. The fields of the waves and their eigenfrequencies are determined to second order in a small parameter.  相似文献   

16.
Understanding load-sharing in the spine during in-vivo conditions is critical for better spinal implant design and testing. Previous studies of load-sharing that considered actual spinal geometry applied compressive follower load, with or without moment, to simulate muscle forces. Other studies used musculoskeletal models, which include muscle forces, but model the discs by simple beams or spherical joints and ignore the articular facet joints.This study investigated load-sharing in neutral standing and flexed postures using a detailed Finite Element (FE) model of the ligamentous lumbosacral spine, where muscle forces, gravity loads and intra-abdominal pressure, as predicted by a musculoskeletal model of the upper body, are input into the FE model. Flexion was simulated by applying vertebral rotations following spine rhythm measured in a previous in-vivo study, to the musculoskeletal model. The FE model predicted intradiscal pressure (IDP), strains in the annular fibers, contact forces in the facet joints, and forces in the ligaments. The disc forces and moments were determined using equilibrium equations, which considered the applied loads, including muscle forces and IDP, as well as forces in the ligaments and facet joints predicted by the FE model. Load-sharing was calculated as the portion of the total spinal load carried along the spine by each individual spinal structure. The results revealed that spinal loads which increased substantially from the upright to the flexed posture were mainly supported by the discs in the upright posture, whereas the ligaments’ contribution in resisting shear, compression, and moment was more significant in the flexed posture.  相似文献   

17.
The purpose of this investigation was to study the kinematics and kinetics of the joints between the leg and calcaneus during the stance phase of walking. The talocrural and talocalcaneal joints were each assumed to act as monocentric single degree of freedom hinge joints. Motion at one joint was defined by the relative rotation of a point on the opposing joint. The results, based upon the gait of three subjects, showed that the hinge joint assumption may be reasonable. A discrepancy in the kinematics was shown between the talocrural joint rotation and its commonly assumed sagittal plane representation, especially during initial flatfoot. This discrepancy is due to the fact that the sagittal plane rotation is created by the combined rotations of the talocrural and talocalcaneal joints. The talocalcaneal joint showed a peak 25-30 Nm supinatory moment at 80% of stance. The talocrural joint moment was qualitatively similar to the commonly measured sagittal plane moment, but the present results show that the sagittal plane moment overpredicted the true moment by 6-22% due to the two-dimensional assumption.  相似文献   

18.
A biomechanical model of the foot is developed and analyzed to determine the distribution of support under the metatarsal heads, the tension in the plantar aponeurosis, and the bending moment at each of the joints of the foot. This model is an extension of our earlier work to include the role of muscles, tendons, and ligaments. Two cases are presented: in the first the center of gravity of the body is over the mid foot, and in the second, the center of gravity is anterior, over the metatarsals, and no support is provided by the heel. The model shows the extent to which the muscles reduce the force in the supporting ligaments at each of the joints and decrease the tension in the plantar aponeurosis, and that this effect is more pronounced when the center of gravity of the body is moved forward.  相似文献   

19.
The majority of foot deformities are related to arch collapse or instability, especially the longitudinal arch. Although the relationship between the plantar fascia and arch height has been previously investigated, the stress distribution remains unclear. The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics. We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images. The model comprised the majority of joints in the foot as well as bone segments, major ligaments, and plantar soft tissue. Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures. These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments, and to explore bone segment displacement and stress distribution. The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment. Plantar fascia release decreased arch height, but did not cause total collapse of the foot arch. The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously. Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones. Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted. The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain. However, these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain. The initial strategy for treating plantar fasciitis should be non-operative.  相似文献   

20.
The anatomy of the feeding apparatus of the lemon shark, Negaprion brevirostris, is investigated by gross dissection, computer axial tomography, and histological staining. The muscles and ligaments of the head associated with feeding are described. The upper and lower jaws are suspended by the hyoid arch, which in turn is braced against the chondrocranium by a complex series of ligaments. In addition, various muscles and the integument contribute to the suspension and stability of the jaws. The dual jaw joint is comprised of lateral and medial quadratomandibular joints that resist lateral movement of the upper and lower jaws on one another. This is important during feeding involving vigorous head shaking. An elastic ethmoplatine ligament that unites the anterior portion of the upper jaw to the neurocranium is involved with upper jaw retraction. The quadratomandibularis muscle is divided into four divisions with a bipinnate fiber arrangement of the two large superficial divisions. This arrangement would permit a relatively greater force per unit volume and reduce muscle bulging of the jaw adductor muscle in the spatially confined cheek region. Regions of relatively diffuse integumental ligaments overlying the adductor mandibulae complex and the levator palatoquadrati muscle, interspersed with localized regions of longer tendonlike attachments between the skin and the underlying muscle, permit greater musculoskeletal movement relative to the skin. The nomenclature of the hypobranchial muscles is discussed. In this shark they are comprised of the unsegmented coracomandibularis and coracohyoideus, and the segmented coracoarcualis. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号