首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanide compounds are contaminants of growing importance that could be remediated biologically via phytoremediation, provided the plants possess suitable mechanisms for managing these pollutants without toxicity. The transport and metabolism of two cyanide compounds, potassium cyanide and potassium ferrocyanide, by willow (Salix eriocephala L. var. Michaux) were compared using a hydroponic system that preserved cyanide speciation and solubility. The cyanide compounds were labelled with 15N to quantify transport while a novel tissue extraction procedure was used to relate tissue 15N to cyanide content and speciation. These analyses revealed that although little free cyanide was detected in the aerial tissues of plants exposed to either of these two cyanide compounds, significant enrichments in 15N were observed, suggesting transport and subsequent metabolism of free cyanide as well as ferrocyanide. The results for ferrocyanide are of interest because this molecule is resistant to microbial degradation and if oxidized to ferricyanide is purportedly membrane impermeable. Nevertheless, these results and mass balance calculations for tissue 15N and solution cyanide confirming 100% recovery for the added ferrocyanide are suggestive of ferrocyanide uptake and metabolism. This study provides new information describing the biological transport and metabolism of these two cyanide compounds in plants. Moreover, the data also suggest that phytoremediation of cyanide may be possible and ecologically safe due to the lack of cyanide bioaccumulation in aerial tissues.  相似文献   

2.
A model for cyanide species uptake by willow (Salix eriocephala L. var. Michaux) was developed to interpret data from hydroponic experiments quantitatively. While the potential for cyanide phytoremediation has been demonstrated modeling will aid in determining plant processes that contribute to cyanide transport and metabolism in willow and will target specific physiological parameters for field-scale phytoremediation design and optimization. The objective of the model development was to gain insight into the relative role of different processes with respect to dissolved free and iron-complexed cyanide transport and assimilation in plants and to determine rates at which these processes occur within the willow plant under the experimental conditions. A physiologically-based model describing plant uptake, transport, and metabolism of cyanide species was developed to reflect the processes that influence the movement of cyanide into and throughout the plant. Plant compartmentalization (root, stem, and leaf) corresponded to the level of detail in the data collected via hydroponic experiments. Inclusion of more detailed intra- and intercellular processes would create a model inconsistent with the macroscale nature of the data. Mass balances around each compartment were developed via kinetic representations for the mass transfer processes and were combined to form a model describing the fate of cyanide species within plant-water systems.  相似文献   

3.
Degradation of ferrous(II) cyanide complex (ferrocyanide) ions by free cells of P. fluorescens in the presence of glucose and dissolved oxygen was investigated as a function of initial pH, initial ferrocyanide and glucose concentrations and aeration rate in a batch fermenter. The microorganism used the ferrocyanide ions as the sole source of nitrogen. The ferrocyanide biodegradation rate was 30.7 mg g−1 h−1 under the conditions of initial pH: 5, stirring rate: 150 rpm, aeration rate: 0.15 vvm, initial ferrous(II) cyanide complex ion and glucose concentrations: 100 mg l−1 and 0.465 g l−1, respectively. The culture utilized glucose as the main substrate following the non-competitive toxic component inhibition model in the presence of 100 mg l−1 initial ferrous(II) cyanide complex ion concentration. The inhibition of ferrous(II) cyanide complex ions as a secondary substrate began at very low concentrations. A mathematical model, based on non-competitive substrate inhibition was used to describe the inhibitory effect of ferrous(II) cyanide complex ions on the growth of microorganism and the best fitted model parameters were determined by non-linear regression techniques.  相似文献   

4.
Kang M  Evers JB  Vos J  de Reffye P 《Annals of botany》2008,101(8):1099-1108
BACKGROUND AND AIMS: In traditional crop growth models assimilate production and partitioning are described with empirical equations. In the GREENLAB functional-structural model, however, allocation of carbon to different kinds of organs depends on the number and relative sink strengths of growing organs present in the crop architecture. The aim of this study is to generate sink functions of wheat (Triticum aestivum) organs by calibrating the GREENLAB model using a dedicated data set, consisting of time series on the mass of individual organs (the 'target data'). METHODS: An experiment was conducted on spring wheat (Triticum aestivum, 'Minaret'), in a growth chamber from, 2004 to, 2005. Four harvests were made of six plants each to determine the size and mass of individual organs, including the root system, leaf blades, sheaths, internodes and ears of the main stem and different tillers. Leaf status (appearance, expansion, maturity and death) of these 24 plants was recorded. With the structures and mass of organs of four individual sample plants, the GREENLAB model was calibrated using a non-linear least-square-root fitting method, the aim of which was to minimize the difference in mass of the organs between measured data and model output, and to provide the parameter values of the model (the sink strengths of organs of each type, age and tiller order, and two empirical parameters linked to biomass production). KEY RESULTS AND CONCLUSIONS: The masses of all measured organs from one plant from each harvest were fitted simultaneously. With estimated parameters for sink and source functions, the model predicted the mass and size of individual organs at each position of the wheat structure in a mechanistic way. In addition, there was close agreement between experimentally observed and simulated values of leaf area index.  相似文献   

5.
Carbon uptake and transpiration in plant leaves occurs through stomata that open and close. Stomatal action is usually considered a response to environmental driving factors. Here we show that leaf gas exchange is more strongly related to whole tree level transport of assimilates than previously thought, and that transport of assimilates is a restriction of stomatal opening comparable with hydraulic limitation. Assimilate transport in the phloem requires that osmotic pressure at phloem loading sites in leaves exceeds the drop in hydrostatic pressure that is due to transpiration. Assimilate transport thus competes with transpiration for water. Excess sugar loading, however, may block the assimilate transport because of viscosity build‐up in phloem sap. Therefore, for given conditions, there is a stomatal opening that maximizes phloem transport if we assume that sugar loading is proportional to photosynthetic rate. Here we show that such opening produces the observed behaviour of leaf gas exchange. Our approach connects stomatal regulation directly with sink activity, plant structure and soil water availability as they all influence assimilate transport. It produces similar behaviour as the optimal stomatal control approach, but does not require determination of marginal cost of water parameter.  相似文献   

6.
Transpiration and water uptake by Lithops lesliei N.E.Br. and L. karasmontana (Dint. et Schwant.) N.E.Br. were measured by means of a potometer in a plant growth chamber under controlled environmental conditions in order to determine whether the embedding of the leaf cones into the soil prevents excessive water loss or not. Plants without embedding increased the transpirational water loss by the cone mantle with decreasing relative humidity of the surrounding air; the diurnal water loss by transpiration was not balanced by the water uptake during the same time. The balance between transpiration and water uptake was maintained during the whole day and was independent of the relative humidity of the free air if the plants were embedded in the soil.  相似文献   

7.
A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ~20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions.  相似文献   

8.
为探明亚铁氰化物在植物体内的迁移、转化及对植物的毒性作用,以长出新根须和嫩叶的垂柳(SalixbabylonicaL.)枝条为材料,在自行设计的250ml生物反应器中生长192h,培养温度为24.0±1℃,亚铁氰化物水溶液的浓度分别为52.99,105.98,211.95和317.93mgCNL-1。结果表明:(1)低浓度实验组(52.99mgCNL-1)水溶液中10.85%的亚铁氰化物被植物吸收,随着浓度的升高吸收到植物体内的亚铁氰化物的比例(%)依次递减,但是统计学分析显示各实验组单位体重(湿重)的植物吸收亚铁氰化物的量无显著性差异;(2)在植物的各个部位都能检测到微量的亚铁氰化物,表明亚铁氰化物通过植物的蒸腾作用在植物体内的迁移。由于没有检测到在气态下的总氰化物,表明植物的蒸腾作用没有将亚铁氰化物释放到大气中;(3)尽管植物吸收到体内的亚铁氰化物是有限的,但物质平衡实验证明其在植物体内迁移的过程中超过96%的都能被植物有效转化;(4)所用的4种亚铁氰化物浓度在192h内没有对柳树产生毒性作用。因此认为:依据亚铁氰化物在水溶液→植物→空气系统内的迁移和转化,亚铁氰化物的植物修复是可能的。  相似文献   

9.
Fricke W 《Annals of botany》2002,90(2):157-167
Grass leaves grow from the base. Unlike those of dicotyledonous plants, cells of grass leaves expand enclosed by sheaths of older leaves, where there is little or no transpiration, and go through developmental stages in a strictly linear arrangement. The environmental or developmental factor that limits leaf cell expansion must do so through biophysical means at the cellular level: wall-yielding, water uptake and solute supply are all candidates. This Botanical Briefing looks at the possibility that tissue hydraulic conductance limits cell expansion and leaf growth. A model is presented that relates pathways of water movement in the elongation zone of grass leaves to driving forces for water movement and to anatomical features. The bundle sheath is considered as a crucial control point. The relative importance of these pathways for the regulation of leaf growth and for the partitioning of water between expansion and transpiration is discussed.  相似文献   

10.
Summary The temperature and water relations of the largleafed, high-elevation species Frasera speciosa, Balsamorhiza sagittata, and Rumex densiflorus were evaluated in the Medicine Bow Mountains of southeast Wyoming (USA) to determine the influence of leaf size, orientation, and arrangement on transpiration. These species characteristically have low minimum stomatal resistances (<60 s m-1) and high maximum transpiration rates (>260 mg m-2s-1 for F. speciosa). Field measurements of leaf and microclimatic parameters were incorporated into a computer simulation using standard energy balance equations which predicted leaf temperature (T leaf) and transpiration for various leaf sizes. Whole-plant transpiration during a day was simulated using field measurements for plants with natural leaf sizes and compared to transpiration rates simulated for plants having identical, but hypothetically smaller (0.5 cm) leaves during a clear day and a typically cloudy day. Although clear-day transpiration for F. speciosa plants with natural size leaves was only 2.0% less per unit leaf area than that predicted for plants with much smaller leaves, daily transpiration of B. sagittata and R. densiflorus plants with natural leaf sizes was 16.1% and 21.1% less, respectively. The predicted influence of a larger leaf size on transpiration for the cloudy day was similar to clear-day results except that F. speciosa had much greater decreases in transpiration (12.7%). The different influences of leaf size on transpiration between the three species was primarily due to major differences in leaf absorptance to solar radiation, orientation, and arrangement which caused large differences in T leaf. Also, simulated increases in leaf size above natural sizes measured in the field resulted in only small additional decreases in predicted transpiration, indicating a leaf size that was nearly optimal for reducing transpiration. These results are discussed in terms of the possible evolution of a larger leaf size in combination with specific leaf absorptances, orientations and arrangements which could act to reduce transpiration for species growing in short-season habitats where the requirement for rapid carbon fixation might necessitate low stomatal resistances.  相似文献   

11.
12.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

13.
Plant transpiration has a key role on both plant performance and ecosystem functioning in arid zones, but realistic estimates at appropriate spatial-temporal scales are scarce. Leaf and tiller morphology and crown architecture were studied together with leaf physiology and whole plant water balance in four individual plants of Stipa tenacissima of different sizes to determine the relative influence of processes taking place at different spatial and temporal scales on whole plant transpiration. Transpiration was estimated in potted plants by leaf-level gas exchange techniques (infrared gas analyzer and porometer), by sap flow measurements, and by integrating leaf physiology and crown architecture with the 3-D computer model Yplant. Daily transpiration of each individual plant was monitored using a gravimetric method, which rendered the reference values. Leaves on each individual plant significantly varied in their physiological status. Young and green parts of the leaves showed five times higher chlorophyll concentration and greater photosynthetic capacity than the senescent parts of the foliage. Instantaneous leaf-level transpiration measurements should not be used to estimate plant transpiration, owing to the fact that extrapolations overestimated individual transpiration by more than 100%. Considering leaf age effects and scaling the estimates according to the relative amount of each foliage category reduced this difference to 46% though it was still significantly higher than gravimetric measurements. Sap flow calculations also overestimated tussock transpiration. However, 3-D reconstruction of plants with Yplant and transpiration estimates, considering both the physiological status and the daily pattern of radiation experienced by each individual leaf section within the crown, matched the gravimetric measurements (differences were only 4.4%). The complex interplay of leaf physiology and crown structure must be taken into account in scaling up plant transpiration from instantaneous, leaf-level measurements, and our study indicates that transpiration of complex crowns is easily overestimated.  相似文献   

14.
《Acta Oecologica》2007,31(3):386-398
Plant transpiration has a key role on both plant performance and ecosystem functioning in arid zones, but realistic estimates at appropriate spatial-temporal scales are scarce. Leaf and tiller morphology and crown architecture were studied together with leaf physiology and whole plant water balance in four individual plants of Stipa tenacissima of different sizes to determine the relative influence of processes taking place at different spatial and temporal scales on whole plant transpiration. Transpiration was estimated in potted plants by leaf-level gas exchange techniques (infrared gas analyzer and porometer), by sap flow measurements, and by integrating leaf physiology and crown architecture with the 3-D computer model Yplant. Daily transpiration of each individual plant was monitored using a gravimetric method, which rendered the reference values. Leaves on each individual plant significantly varied in their physiological status. Young and green parts of the leaves showed five times higher chlorophyll concentration and greater photosynthetic capacity than the senescent parts of the foliage. Instantaneous leaf-level transpiration measurements should not be used to estimate plant transpiration, owing to the fact that extrapolations overestimated individual transpiration by more than 100%. Considering leaf age effects and scaling the estimates according to the relative amount of each foliage category reduced this difference to 46% though it was still significantly higher than gravimetric measurements. Sap flow calculations also overestimated tussock transpiration. However, 3-D reconstruction of plants with Yplant and transpiration estimates, considering both the physiological status and the daily pattern of radiation experienced by each individual leaf section within the crown, matched the gravimetric measurements (differences were only 4.4%). The complex interplay of leaf physiology and crown structure must be taken into account in scaling up plant transpiration from instantaneous, leaf-level measurements, and our study indicates that transpiration of complex crowns is easily overestimated.  相似文献   

15.
Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient ‘non-polypod’ fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf’s lifetime transpiration may play a significant role in determining plant nutrition.  相似文献   

16.
Gaseous fluxes of peroxyacetyl nitrate (PAN) into plant leaves   总被引:1,自引:0,他引:1  
Peroxyactyl nitrate (PAN) is the most abundant of the gaseous organic nitrates produced from the photochemistry of hydrocarbons and NOx (i.e. ozone and smog production). PAN is known to be toxic to plants and also as a reservoir for the transport nitrogen dioxide in the troposphere. Here, the effect of vegetation on PAN deposition was investigated in four plant species by measuring leaf fluxes of PAN in a dynamic leaf chamber using atmospheric PAN fumigations between 0.7 and 18 nmol mol?1. A linear relationship was observed between PAN flux and ambient PAN mixing ratio for all species. Depending on the species, measured PAN flux varied between 11 and 24 pmol m?2 s?1. Measured fluxes of PAN accounted for 12–48% of the PAN flux predicted solely from modelled stomatal conductance to PAN, suggesting the presence of a mesophyllic resistance to PAN uptake. The brief (approximately 5–10 min) exposure to PAN during uptake measurements did not affect photosynthesis, transpiration or conductance to water vapour. Increasing stomatal resistance by varying the vapour pressure gradient between the leaf chamber and leaf internal air space led to a corresponding drop in PAN uptake. Varying leaf nitrogen and total leaf–ascorbate concentrations did not appear to influence PAN uptake as had been reported for other reactive odd‐nitrogen gases. Measured and model‐predicted PAN fluxes were offset, but correlated suggesting that PAN flux could be estimated using established stomatal conductance algorithms.  相似文献   

17.
应用热平衡法测定玉米/大豆间作群体内作物的蒸腾量   总被引:2,自引:0,他引:2  
通过田间试验采用基于热平衡法的茎流计测定玉米/大豆条带间作群体内作物的蒸腾规律.结果表明:间作群体内,玉米和大豆植株的茎流速率在晴天呈单峰曲线,在阴天则呈多峰曲线.植株的茎流受多个环境因子的影响,其中太阳辐射是影响植株茎流最主要的气象因子.玉米和大豆的单株日茎流量与多个气象因子间存在较好的相关关系,达到极显著水平.茎流观测期内(2008年6月1-30日),间作群体内玉米植株的日均蒸腾量(1.44 mm·d-1)为大豆(0.79 mm·d-1)的1.8倍,玉米和大豆植株的蒸腾量分别占间作群体总蒸腾量的64%和36%.考虑到作物的茎直径和叶面积的空间变异,安装一定数量的茎流探头对于准确测定植株茎流是十分必要的.  相似文献   

18.
The addition of NaCl to cadmium had significant synergistic effect on the wheat root and shoot fresh mass, relative growth rate and net assimilation rate, while showed no significant effects on the dry mass production, leaf area, leaf area ratio, leaf mass ratio and specific leaf area. Additive depression of the rate of photosynthesis and the stomatal conductance was recorded, while no significant effect on the transpiration rate was observed. The Cd stress disturbed the mineral nutrition of the wheat plants either directly or indirectly, NaCl markedly reduce the uptake and internal concentration of K and Ca in the shoot. The combination of cadmium and NaCl showed no additive effects on the content of ions in the root as well as in the shoot of wheat plants.  相似文献   

19.
The wastes from some industrial processes and the tailings from gold mining contain elevated concentrations of cyanide, which reacts with iron in the media to form iron cyanide complexes. This research examined the transport and possible metabolism of ferrocyanide by two native Australian trees, blue mallee and sugar gum, and by sorghum. Hydroponic studies using 15N-labeled ferrocyanide showed that both tree species transported ferrocyanide into roots and displayed significant increases in 15N enrichment and concentration with no evidence of phytotoxicity. A subsequent experiment with blue mallee and membrane-transport inhibitors showed that 15N enrichment was significantly inhibited in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that ferrocyanide uptake is mediated partly by H+-symporters. A study of the time dependence of 15N translocation showed a rapid equilibration of 15N from ferrocyanide in the root of blue mallee, accompanied by a slow increase in shoot 15N, suggestive of the metabolism of ferrocyanide in plant roots. A similar experiment with sorghum showed a more rapid translocation of 15N, suggesting that the transport and/or metabolism of ferrocyanide by roots of this species may differ. The results offer additional incentive for the use of these species as vegetative cover over cyanidation wastes and for cyanide phytoremediation.  相似文献   

20.
During the grain filling period we followed diurnal courses in leaf water potential (ψ1), leaf osmotic potential (ψπ), transpiration (E), leaf conductance to water vapour transfer (g) and microclimatic parameters in field-grown spring barley (Hordeum distichum L. cv. Gunnar). The barley crop was grown on a coarse textured sandy soil at low (50 kg ha−1) or high (200 kg ha−1) levels of potassium applied as KCl. The investigation was undertaken at full irrigation or under drought. Drought was imposed at the beginning of the grain filling period. Leaf conductance and rate of transpiration were higher in the flag leaf than in the leaves of lower insertion. The rate of transpiration of the awns on a dry weight basis was of similar magnitude to that of the flag leaves. On clear days the rate of transpiration of fully watered barley plants was at a high level during most part of the day. The transpiration only decreased at low light intensities. The rate of transpiration was high despite leaf water potentials falling to rather low values due to high evaporative demands. In water stressed plants transpiration decreased and midday depression of transpiration occurred. Normally, daily accumulated transpirational water loss was lower in high K leaves than in low K leaves and generally the bulk water relations of the leaves were more favourable in high K plants than in low K plants. The factorial dependency of the flag leaf conductances on leaf water potential, light intensity, leaf temperature, and leaf-to-air water vapour concentration difference (ΔW) was analysed from a set of field data. From these data, similar sets of microclimatic conditions were classified, and dependencies of leaf conductance on the various environmental parameters were ascertained. The resulting mathematical functions were combined in an empirical simulation model. The results of the model were tested against other sets of measured data. Deviations between measured and predicted leaf conductance occurred at low light intensities. In the flag leaf, water potentials below-1.6 MPa reduced the stomatal apertures and determined the upper limit of leaf conductance. In leaves of lower insertion level conductances were reduced already at higher leaf water potentials. Leaf conductance was increased hyperbolically as photosynthetic active radiation (PAR) increased from darkness to full light. Leaf conductance as a function of leaf temperature followed an optimum curve which in the model was replaced by two linear regression lines intersecting at the optimum temperature of 23.4°C. Increasing leaf-to-air water vapour concentration difference caused a linear decrease in leaf conductance. Leaf conductances became slightly more reduced by lowered water potentials in the low K plants. Stomatal closure in response to a temperature change away from the optimum was more sensitive in high K plants, and also the decrease in leaf conductance under the influence of lowered ambient humidity proceeded with a higher sensitivity in high K plants. Thus, under conditions which favoured high conductances increase of evaporative demand caused an about 10% larger decrease in leaf conductance in the high K plants than in the low K plants. Stomatal sizes and density in the flag leaves differed between low and high K plants. In plants with partially open stomata, leaf conductance, calculated from stomatal pore dimensions, was up to 10% lower in the high K plants than in the low K plants. A similar reduction in leaf conductance in high K plants was measured porometrically. It was concluded that the beneficial effect of K supply on water use efficiency reported in former studies primarily resulted from altered stomatal sizes and densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号