首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Saito  M Ito  K Sugiyama 《Life sciences》1999,64(20):1803-1810
Gangliosides in pancreas, kidney, and liver tissues from streptozotocin-induced diabetic rats were analyzed by methods including thin-layer chromatographic (TLC) immunostaining with a specific monoclonal antibody to c-series gangliosides. In rats suffering diabetes for one month, the composition of major gangliosides in pancreatic tissue was almost identical to control, except for a slight increase in the content of GM3. Though c-series gangliosides such as GT3, GT2, GQ1c, and CP1c were expressed in normal pancreatic tissue, they were practically lost in pancreas of diabetic animals. A specific loss of c-series gangliosides was also observed in pancreatic tissue from rats suffering diabetes only for three days. While the composition of major gangliosides in the kidney did not change, streptozotocin-induced diabetic conditions brought about significant increases in contents of practically all major ganglioside species in liver tissue. No change was observed in the amount and composition of c-series gangliosides in both tissues. These results strongly suggest that c-series gangliosides are specifically localized in pancreatic B cells.  相似文献   

2.
Kwak DH  Rho YI  Kwon OD  Ahan SH  Song JH  Choo YK  Kim SJ  Choi BK  Jung KY 《Life sciences》2003,72(17):1997-2006
Ganglioside GM(3) (NeuAcalpha3Galbeta4Glcbeta1Cer) is known to regulate the proliferation of many cell types and to maintain the charge-selective filtration barrier of glomeruli. Based on these, this study examined whether altered expression of ganglioside GM(3) was pathologically related with glomerular hypertrophy and proteinuria occurring in diabetic human and rat kidneys. Diabetic rats were produced by intraperitoneal injection of streptozotocin (80 mg/kg, I.P.). At 15 days after the induction of diabetes, glomerular volume and fibrotic matrix were dramatically elevated, whereas glomerular sialic acid contents were significantly reduced compared with control. Based upon mobility on high-performance thin-layer chromatography (HPTLC) and reactivity to anti-GM(3) monoclonal antibody, normal glomeruli showed a complex ganglioside pattern that consisted of six different components of gangliosides, mainly GM(3), and diabetes caused a severe reduction of these gangliosides with apparent changes in the composition of major ganglioside GM(3). Semi-quantitative analysis by HPTLC showed that ganglioside GM(3) was reduced to 57% of control in diabetic glomeruli. A prominent immunofluorescence microscopy showed a dramatic disappearance of GM(3) expression in diabetic glomeruli. These results indicate that diabetic glomeruli can be characterized by decreases of glomerular sialic acid content and ganglioside GM(3) expression, which may cause loss of charge-selective filtration barrier in renal glomeruli. These changes may be account, at least in part, for the development of glomerular hypertrophy and proteinuria seen in the early stage of diabetic glomerulopathy.  相似文献   

3.
Ganglioside GM3 is particularly abundant in the kidney tissue and is thought to play an important role in the maintenance of the charge-selective filtration barrier of glomeruli. Altered expression of ganglioside GM3 was pathologically related with glomerular hypertrophy occurring in diabetic human and rat kidneys. Considering the role of GM3 ganglioside in kidney function, the aim of this study was to determine the difference in expression of GM3 ganglioside in glomeruli and tubules using immunofluorescence microscopy both in rat models of types 1 and 2 diabetes mellitus. Diabetes was induced with streptozotocin (55 mg/kg for type 1 diabetes and 35 mg/kg for type 2 diabetes) injection to male Sprague–Dawley rats which were fed with normal pellet diet (type 1 diabetes) or high-fat diet (type 2 diabetes). Rats were sacrificed 2 weeks after diabetes induction, frozen renal sections were stained with primary antibody GM3(Neu5Ac) and visualized by secondary antibody coupled with Texas red. In addition, renal gangliosides GM3 were analyzed by high-performance thin-layer chromatography followed by GM3 immunostaining. Immunofluorescent microscopy detected 1.7-fold higher GM3 expression in tubules and 1.25-fold higher GM3 in glomeruli of type 1 diabetes mellitus compared with control group. Type 2 diabetes mellitus rats showed slight GM3 increase in whole kidney, unchanged GM3 in glomeruli, but significant higher GM3 expression in tubules, compared with control animals. Taking into consideration increased tubular GM3 content in both types of diabetes, we could hypothesize the role of GM3 in early pathogenesis of diabetic nephropathy.  相似文献   

4.
Adults rats with hypothyroidism were prepared by administration of 6-propyl-2-thiouracil (PTU) or methimazole, and the tissues were examined for their gangliosides through methods including glycolipid-overlay techniques. Normal thyroid tissue contained GM3, GD3, and GD1a as the major gangliosides, with GM1, GD1b, GT1b, and GQ1b in lesser amounts. The goitrous tissue of PTU-induced hypothyroid rats had higher concentrations of GM1 and GD1a with a concomitant decrease of GM3. The amount of GT3 in thyroid tissue was increased in hypothyroid animals. While normal liver tissue had a complex ganglioside pattern with a- and b-series gangliosides, the PTU-induced hypothyroid tissue showed a simpler ganglioside profile that consisted mainly of a-series gangliosides with almost undetectable amounts of b-series gangliosides. The expression of c-series gangliosides was suppressed in the hypothyroid liver tissue. Heart tissue had higher contents of GM3 and GT3 than control. No apparent change was observed in the compositions of major and c-series gangliosides in other extraneural tissues (i.e., kidney, lung, spleen, thymus, pancreas, testis, skeletal muscle, and eye lenses), and neural tissues (i.e., cerebrum and cerebellum) from PTU-induced hypothyroid rats. The ganglioside changes of thyroid, liver, and heart tissues were reproduced in corresponding tissues of methimazole-induced hypothyroid rats. These results suggest that hypothyroid conditions affect the biosynthesis and expression of gangliosides in specific tissue and cell types.  相似文献   

5.
The hexosamine pathway (HP) is a biochemical hypothesis recently proposed explaining cellular alterations occurring during diabetic microvascular complications. Diabetic retinopathy is a common microvascular complication of diabetes, and it is known that cell proliferation is severely affected during the development of the disease. Particularly, early stages are characterized by death of the retinal microvascular cells, pericytes. Gangliosides have often been described to regulate cell growth; however, very few studies focused on the potential role of gangliosides in diabetic microvascular alterations. The aim of this article was to investigate the effect of the HP activation on pericyte proliferation and determine the potential implication of gangliosides in this process. Results indicate first that HP activation, mimicked by glucosamine treatment, decreased pericyte proliferation. Second, glucosamine treatment induced a modification of gangliosides pattern, particularly GM1 and GD3 were significantly increased. Next, results showed that exogenous addition of a-series gangliosides (GM3, GM2, GM1, GD1a) and b-series ganglioside (GD3) caused a decrease of pericyte proliferation, whereas nonsialylated precursors glucosylceramide and lactosylceramide were without effect. Furthermore, when ganglioside biosynthesis was blocked using PPMP, a glucosylceramide synthase inhibitor, the effects of glucosamine on pericyte proliferation were partially reversed. Our results suggest that in retinal pericytes, gangliosides and particularly GM1 and GD3 that are increased in response to glucosamine, are involved in the antiproliferative effect of glucosamine. These observations also underlie the potential involvement of gangliosides in a pathological context, such as diabetic microvascular complications.  相似文献   

6.
Rat liver gangliosides (sialic acid containing glycosphingolipids) were analyzed by HPTLC and HPLC following either partial hepatectomy or sham operation. Analysis of whole liver gangliosides by HPTLC demonstrated that within 6 h after partial (68%) hepatectomy, there was a significant increase in GM1 compared to both sham and control animals. By 48 h, GM1 was further increased and the polysialylgangliosides GD1a, GD1b and GT1b had also risen significantly, whereas changes in GM3 were negligible. Gangliosides associated with the plasma membrane were increased up to 3.5-fold in regenerating liver compared to sham-hepatectomized controls as assessed by HPLC. Although elevations in membrane gangliosides were associated with hepatocyte proliferation, they did not closely follow the growth curve. The time course of changes in ganglioside biosynthesis suggests differential upregulation of GM3 synthase and GD3 synthase in regenerating livers.  相似文献   

7.
Abstract: Effects of ganglioside administration on elemental composition of peripheral nerve myelinated axons and Schwann cells were determined in streptozotocin-induced diabetic rats and nondiabetic controls. Diabetic rats (50 days after administration of streptozocin) exhibited a loss of axoplasmic K and Cl concentrations in sciatic nerve relative to control, whereas intraaxonal levels of these elements increased in tibial nerve. These regional changes in diabetic rat constitute a reversal of the decreasing proximodistal gradients for K and Cl concentrations that characterize normal peripheral nerve. Treatment of diabetic rats with a ganglioside mixture for 30 days (initiated 20 days after the administration of streptozocin) returned proximal sciatic nerve axoplasmic K and Cl concentrations to control levels, whereas in tibial axons, concentrations of these elements increased further relative to diabetic levels. Also in the ganglioside/diabetic group, mean axoplasmic Na concentrations were reduced and Ca levels were elevated. Mixed ganglioside treatment of nondiabetic rats significantly increased axoplasmic dry weight concentrations of K and Cl in proximal sciatic and tibial axons. Schwann cells did not exhibit consistent alterations in elemental content regardless of treatment group. Changes in elemental composition evoked by ganglioside treatment of diabetic rats might reflect the ability of these substances to stimulate Na+,K+-ATPase activity and might be related to the mechanism by which gangliosides improve functional deficits in experimental diabetic neuropathy.  相似文献   

8.
Liver gangliosides of different animal species were analyzed. Bony fish liver contained a major ganglioside that migrated faster than GM3 on thin-layer chromatography (TLC). This ganglioside was identified to be GM4 (NeuAc) by methods including product analysis after sialidase treatment and negative-ion electrospray ionization (ESI)-mass spectrometry (MS). The presence of GM4 (NeuGc) in fish liver was also demonstrated. The main ganglioside band of bovine liver consisted of two different molecular species, i.e. GD1a (NeuAc/NeuAc) and GD1a (NeuAc/NeuGc). Major gangliosides of liver tissue exhibited a distinct phylogenetic profile; GM4 was expressed mainly in lower animals such as bony fish and frog liver, whereas mammalian liver showed ganglioside patterns with smaller proportions of monosialo ganglioside species. While c-series gangliosides were consistently expressed in lower animals, they were found only in mammalian liver of particular species. No apparent trend was observed between the concentration of liver gangliosides and the phylogenetic stage of animals. The present study demonstrates the species-specific expression of liver gangliosides.  相似文献   

9.
Earlier work describing increased biliary excretion of the acetaminophen-cysteine conjugate advanced the hypothesis that streptozotocin-induceddiabetes increases <γ > -glutamyltranspeptidase (GGT) expression in Sprague–Dawley rats. To test this hypothesis, rats were divided into control, diabetic, and insulin-treated diabetic groups. Diabetes was induced by intravenous injection of 45 mg streptozotocin/kg body weight and was effectively controlled by insulin treatment in the appropriate group. Densitometric quantification demonstrated that hepatic GGT activity in diabetic rats was significantly increased when compared to normal and insulin-treated diabetic controls. Histochemical staining of liver was greater in female than in male rats, and staining increased in female rat liver as the duration of diabetes lengthened from 30 to 90 days. GGT activity was increased by diabetes in liver canalicular-enriched and basolateral-enriched membrane preparations, and it was unchanged in renal brush border-enriched membranes. Total mRNA isolated from diabetic and insulin-treated diabetic rat livers did not conclusively demonstrate an elevation of GGT mRNA relative to normal. Western blot analysis showed no differences in the amount of GGT in diabetic versus normal rat livers. These data indicate that streptozotocin-induced diabetes does not alter the expression of, but does increase the activity of, GGT in liver. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 219–225, 1998  相似文献   

10.
Developmental profiles of gangliosides in trisomy 19 mice   总被引:1,自引:0,他引:1  
The ganglioside composition of the cerebrum, cerebellum, brainstem, liver, heart, and spleen was analyzed quantitatively in trisomy 19 (Ts19) mice aged 4 to 12 days postpartum. The developmental profiles of cerebral gangliosides were similar in Ts19 mice and control littermates: Total ganglioside-sialic acid as well as the proportions of the individual gangliosides GD1a and GM1 increased with age, while the percentages of GQ1b and GT1b decreased during development. Both the accretion of the total ganglioside content and the development of the individual ganglioside fractions were delayed by 2-3 days in the Ts19 telencephalon. Likewise, the shift from the b- to the a-pathway of ganglioside synthesis was retarded. Ganglioside development was equally delayed in the cerebellum and the brainstem of Ts19 mice. Since in Ts19 mice, morphogenesis of several brain regions is similarly delayed by 2 days, these results confirm the usefulness of gangliosides as biochemical markers for brain maturation. In contrast to brain gangliosides, the ganglioside composition of the Ts19 livers was clearly distinguished from that of control livers. Total ganglioside-bound sialic acid was increased by 35-50% in Ts19 livers. This elevation in ganglioside content not explicable by a simple delay in development was mainly due to an increase in GD3 and fraction 2, which is likely to contain GD1a and GD1b. In contrast, GM2 which increased considerably with age in control mice persisted on a low level in Ts19 livers. Comparable alterations of the ganglioside pattern were neither observed in the spleen nor in the heart of Ts19 mice. The data presented give additional evidence that ganglioside synthesis in the liver is under a different regulation mechanism than that in the brain, heart, and spleen.  相似文献   

11.
The activity of GD3 synthase modulates the ganglioside pattern in rat liver   总被引:1,自引:0,他引:1  
Variations of the ganglioside composition in the livers of Wistar rats correlated with the activity of GD3 synthase in the corresponding liver homogenates. With increasing enzyme activity, higher proportions of b-series gangliosides (GD3, GD1b, GT1b) were detected. No significant changes in the activity of GM2 synthase or GM1 synthase were observed, indicating a regulatory function for GD3 synthase in this tissue. Young animals showed an average GD3 synthase activity of 0.5-0.6 nmol.h-1.mg protein-1 without sex-dependent variations. Among the older animals, however, males expressed an activity five-fold higher than females, suggesting that this enzyme might be affected by hormones.  相似文献   

12.
Hyperglycemia of diabetes has been implicated in increased tissue oxidative stress, with consequent development of secondary complications. Thus, stabilizing glucose levels near normal levels is of utmost importance. Because diet influences glycemic control, this study investigated whether a low-carbohydrate (5.5%) diet confers beneficial effects on the oxidative status of the heart, kidney, and liver in diabetes. Male and female normal and diabetic rats were fed standard chow (63% carbohydrates) or low-carbohydrate diet for 30 days. Elevated glucose, HbA(1c), and alanine and aspartate aminotransferases in diabetic animals were reduced or normalized by the low-carbohydrate diet. While diabetes increased cardiac activities of glutathione peroxidase and catalase, low-carbohydrate diet normalized cardiac glutathione peroxidase activity in diabetic animals, and reduced catalase activity in females. Diabetic rats fed low-carbohydrate diet had altered activities of renal glutathione reductase and superoxide dismutase, but increased renal glutathione peroxidase activity in diabetic animals was not corrected by the test diet. In the liver, diabetes was associated with a decrease in catalase activity and glutathione levels and an increase in glutathione peroxidase and gamma-glutamyltranspeptidase activities. Decreased hepatic glutathione peroxidase activity and lipid peroxidation were noted in diet-treated diabetic rats. Overall, the low-carbohydrate diet helped stabilize hyperglycemia and did not produce overtly negative effects in tissues of normal or diabetic rats.  相似文献   

13.
We examine here the delivery of gangliosides from the perfused rat liver into the perfusate. One hour after the administration of [3H]GM1 to recirculating perfused livers, almost 80% of the perfusate radioactive gangliosides were recovered associated to the HDL fraction. This fraction was relatively enriched in radioactive GD1a. The pattern of endogenous gangliosides from perfused livers, rat serum and perfusates were very different: GM3 was the main liver ganglioside, GM1 and GD1a were the most abundant in perfusates being GM3 almost absent; GM3, GM1 and GD1a were present in rat serum in similar proportions. Using a non-recirculating perfusion protocol, radioactive gangliosides were found in the HDL fraction since 15 minutes after the administration of [3H]GM1. These results suggest that rat liver supplies the perfusates with some gangliosides and that they are associated to HDL. These facts arise the possibility that the liver is one of the source of serum gangliosides.  相似文献   

14.
Three key regulatory enzymes in ganglioside biosynthesis, sialyltransferase I (ST1), sialyltransferase II (ST2), and N-acetylgalactosaminyltransferase I (GalNAcT), have been expressed as fusion proteins with green, yellow, or red fluorescent protein (GFP, YFP, or RFP) in F-11A cells. F-11A cells are a substrain of murine neuroblastoma F-11 cells that contain only low endogenous ST2 and GalNAcT activity. The subcellular localization of the fusion proteins has been determined by fluorescence microscopy, and the ganglioside composition of these cells was analyzed by high-performance thin-layer chromatography (HPTLC). ST2-GFP (85 kDa) shows a distinct Golgi localization, whereas ST1-YFP (85 kDa) and GalNAcT-RFP (115 kDa) are broadly distributed in ER and Golgi. Untransfected F-11A cells contain mainly GM3, whereas stable transfection with ST2 or GalNAcT results in the predominant expression of b-series complex gangliosides (BCGs). This result indicates that the expression of ST2 enhances the activity of endogenous GalNAcT and vice versa. The specificity of this reaction has been verified by in vitro activity assays with detergent-solubilized enzymes, suggesting the formation of an enzyme complex between ST2 and GalNAcT but not with ST1. Complex formation has also been verified by co-immunoprecipitation of ST2-GFP upon transient transfection with GalNAcT-HA-RFP and by GFP-to-RFP FRET signals that are confined to the Golgi. FRET analysis also suggests that ST2-GFP binds tightly to pyrene-labeled GM3 but not to ST1. We hypothesize that an ST2-GM3 complex is associated with GalNAcT, resulting in the enhanced conversion of GM3 to GD3 and BCGs in the Golgi. Taken together, our results support the concept that ganglioside biosynthesis is tightly regulated by the formation of glycosyltransferase complexes in the ER and/or Golgi.  相似文献   

15.
Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent   总被引:4,自引:0,他引:4  
Niemann-Pick type C (NPC) disease is a lysosomal disorder commonly caused by a recessive mutation in NPC1, which encodes an integral membrane protein with regions of homology to the morphogen receptor, Patched, and to 3-hydroxy-3-methylglutaryl coenzyme A reductase. Neurons in NPC disease exhibit extensive storage of free cholesterol and glycosphingolipids (GSLs), including GM2 and GM3 gangliosides. Most studies have viewed cholesterol storage as primary, with NPC1 functioning as a retroendocytic transporter for regulation of cholesterol homeostasis. Here, we analyze the effects of genetically depriving NPC neurons of complex gangliosides by creating mice doubly deficient in both NPC1 and the GSL synthetic enzyme, GM2/GD2 synthase (GalNAcT). Ganglioside and cholesterol expression in neurons of NPC1(-/-)/GalNAcT(+/+), NPC1(-/-)/GalNAcT(-/-), NPC1(+/+)/GalNAcT(-/-), and WT mice was examined in situ by immunocytochemical and histochemical methods. Neurons in double-deficient mice lacked intraneuronal GM2 accumulation as expected, but remarkably also exhibited absence or dramatic reduction in free cholesterol. Neurons storing cholesterol consistently showed GM3 accumulation but some GM3-positive neurons lacked cholesterol storage. These findings provide a compelling argument that cholesterol sequestration in NPC1-deficient neurons is ganglioside dependent and suggest that the function of NPC1 in these cells may be more closely linked to homeostatic control of GSLs than cholesterol.  相似文献   

16.
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells.  相似文献   

17.
Medulloblastoma biopsies are heterogenous and might contain normal brain tissue, which limits the usefulness of such tumor material for biochemical analyses. We have, therefore, examined the gangliosides and their metabolism using the medulloblastoma cell lines. Daoy and D341 Med, cultured both in vitro and as xenografts in nude mice. The ganglioside patterns in the Daoy showed a switch from a high GM2, 70% (mol% of total ganglioside sialic acid) and low lactoseries gangliosides (2%) content in monolayer cultures, to a high proportion of lactoseries gangliosides (50%) and virtually no GM2 (1%) in xenografts, but an increased proportion of other a-series gangliosides. The D341 Med showed a similar change regarding the lacto-series gangliosides from 1% in suspension culture to 10% in xenografts. The activity of five glycosyltransferases, GM3, GD3, GM2, GM1 and LA2 synthases, did not parallel the ganglioside patterns and could not account for the noted variations therein. In the Daoy cell line the LA2 synthase as well as the GM2 synthase activity was relatively high in both culture systems, despite the marked difference in the expression of GM2 and the lactoseries gangliosides. These results suggest that environmental factors play a crucial role for the in vivo activity of the glycosyltransferases.  相似文献   

18.
The possibility that liver cell membrane is modified in hyperlipidemic state was studied using nephrotic hyperlipidemic rats. Liver cells of normal and nephrotic rats were isolated and subjected to labeling of cell surface components using lactoperoxidase catalyzed radioiodination. The labeling of total surface lipids of hepatocytes of nephrotic rats was about five times higher than that of normal ones and was particularly higher in glycosphingolipids. Cultivation of the isolated hepatocytes as primary cultures reduced drastically labeling of surface lipids in liver cells of both nephrotic and normal rats and abolished the differences observed in liver cells of the two types. Determination of cell associated gangliosides, showed that the level in nephrotic rat hepatocytes was only 35% higher than that of normal rats. Yet, in both types of liver cells 24 h cultivation decreased markedly the ganglioside content. However, similar to the effect observed in hyperlipidemic rats, supplementing the culture medium with very low density lipoproteins (VLDL) increased considerably the ganglioside level of cultured hepatocytes. These treatments did not affect the activity of enzymes involved in the synthesis of gangliosides. It is suggested that ganglioside content in liver cell membrane is modulated in the hyperlipidemic state.  相似文献   

19.
We recently identified ganglioside GM3 as a modulator of glomerular hypertrophy in streptozotocin-induced diabetic rats (Life Sci., 72: 1997-2006, 2003). This study examined whether alteration of ganglioside GM3 expression could modulate the high glucose-induced proliferation of glomerular mesangial cells (GMCs). GMCs isolated from rat kidneys were cultured under normal (5.6 mM) or high (25 mM) glucose condition for 24-72 hrs. Cell proliferation was predominantly stimulated when GMCs were cultured with high glucose as well as 20 microM of d-threo-PDMP, an inhibitor of ganglioside biosynthesis, for 24 hrs, whereas raising ambient glucose significantly reduced the mesangial sialic acid contents. Based upon mobility on high-performance thin-layer chromatography (HPTLC), GMCs showed a complex pattern of ganglioside expression that consisted of three major components of gangliosides, mainly GM3. High glucose induced a significant reduction of ganglioside expression with apparent changes in the composition of major ganglioside GM3, and semi-quantitative analysis by HPTLC showed that ganglioside GM3 was reduced to 62% of GMCs cultured under normal glucose condition. A prominent immunofluorescence microscopy using anti-GM3 monoclonal antibody also showed a dramatic disappearance of immunoreactivity in high glucose-treated GMCs. Moreover, high glucose significantly lowered the Km values of GM3 synthase (16 microM vs. 49 microM), but did not change the Vmax. These results provide the pathophysiological relationship between the high glucose-induced proliferation of GMCs and the decreased expression of ganglioside GM3, indicating a mechanism for the negative regulation of mesangial proliferation by ganglioside GM3. This mechanism may play an important role in the development of diabetic glomerulopathy.  相似文献   

20.
The factors that control adrenal steroid secretion and metabolism were investigated in rats made diabetic with Streptozotocin (65 mg/kg) and used one month after treatment. Diabetic animals possessed high resting levels of plasma corticosterone accompanied by adrenal hypertrophy; the showed an increased response to the stress of i.p. cold water injection. Moreover, the pituitaries of diabetic rats seemed to be releasing ACTH continuously and not storing it. Upon adrenal inhibition with Aminoglutethimide the expected increase in adrenal cholesterol and weight was of a smaller magnitude than in controls. The activity of liver enzymes that reduce ring A of corticosterone showed decreased activity in diabetics, which suggests that more corticosterone rather than its inactive metabolites were available to--but not able to suppress--the steroid feedback sites. The half-life of corticosterone in blood was similar in diabetes and controls. These results suggest that (a) diabetic animals were in a chronic stress condition; (b) the threshold for steroid feedback was less sensitive to variations in plasma corticosterone; (c) there is an abnormal peripheral disposal of corticosterone, but that other factors, besides the liver, regulate the clearance of the hormone from the circulation in the diabetic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号