首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Sexual fate of the sawfly, Athalia rosae (Hymenoptera: Tenthredinidae) is determined by the complementary sex determination (CSD) mechanism as is the case in honeybees. However, to date, genes involved in sex determination have not been identified in this species. In this study, we attempted to identify orthologs of complementary sex-determiner (csd), feminizer (fem), and doublesex (dsx) from the Arosae genome, all of which are crucial components of the sex determination cascade in the honeybee. As a result, we identified a sawfly ortholog of dsx (designated as Ardsx). Rapid amplification of cDNA ends (RACE) using total RNA extracted from male and female larvae identified three male-specific variants and three female-specific variants. Comparison between the full-length Ardsx cDNAs and the genomic sequence revealed that exon 5 was differentially spliced between the male- and female-specific variants. RT-PCR analysis demonstrated that Ardsx pre-mRNA was spliced alternatively in a sex-dependent manner at almost all the developmental stages. RNAi-mediated knockdown of Ardsx in males caused severe defects in the reproductive organs and, notably, induced development of the ovipository apparatus containing the dorsal pair of blades and the sheath. These males also showed abnormalities in testes and seminal vesicles and lacked mature sperm. The present study provides the first direct evidence that dsx is essential for sexual development in hymenopteran species.  相似文献   

4.
The evolution of genes related to sex and reproduction in fish shows high plasticity and, to date, the sex determination system has only been identified in a few species. Solea senegalensis has 42 chromosomes and an XX/XY chromosome system for sex determination, while related species show the ZZ/ZW system. Next-generation sequencing (NGS), multi-color fluorescence in situ hybridization (mFISH) techniques, and bioinformatics analysis have been carried out, with the objective of revealing new information about sex determination and reproduction in S. senegalensis. To that end, several bacterial artificial chromosome (BAC) clones that contain candidate genes involved in such processes (dmrt1, dmrt2, dmrt3, dmrt4, sox3, sox6, sox8, sox9, lh, cyp19a1a, amh, vasa, aqp3, and nanos3) were analyzed and compared with the same region in other related species. Synteny studies showed that the co-localization of dmrt1-dmrt2-drmt3 in the largest metacentric chromosome of S. senegalensis is coincident with that found in the Z chromosome of Cynoglossus semilaevis, which would potentially make this a sex proto-chromosome. Phylogenetic studies show the close proximity of S. senegalensis to Oryzias latipes, a species with an XX/XY system and a sex master gene. Comparative mapping provides evidence of the preferential association of these candidate genes in particular chromosome pairs. By using the NGS and mFISH techniques, it has been possible to obtain an integrated genetic map, which shows that 15 out of 21 chromosome pairs of S. senegalensis have at least one BAC clone. This result is important for distinguishing those chromosome pairs of S. senegalensis that are similar in shape and size. The mFISH analysis shows the following co-localizations in the same chromosomes: dmrt1-dmrt2-dmrt3, dmrt4-sox9-thrb, aqp3-sox8, cyp19a1a-fshb, igsf9b-sox3, and lysg-sox6.  相似文献   

5.
6.
7.
The demography and reproductive biology of three Epinephelus groupers (Serranidae), namely E. polyphekadion, E. tauvina, and E. howlandi in the Yaeyama Islands, Okinawa, were examined based on age assessment using otoliths and gonadal histology. The maximum ages for these three species were 26 year, 23 year, and 17 year. The von Bertalanffy growth functions were also determined for each species. The size and age at 50% female maturity were estimated to be 358 mm in total length (TL) and 6.0 year for E. polyphekadion, 371 mm TL and 6.7 year for E. tauvina, and 327 mm TL and 4.1 year for E. howlandi, respectively. Significant differences between the sexes in size and age frequencies were found in all three species, with males being larger and older than females, or transitional individuals. These results strongly indicated that the population of these three grouper species showed monandric protogynous hermaphroditism. The sex ratios of E. polyphekadion and E. tauvina were biased in favor of females, but that of E. howlandi was equivalent between sexes. The relative sizes of ripe testes indicated that the intensity of sperm competition varied among species suggesting different mating system of each species. Reproductive seasonality was similar among species, with active vitellogenesis coinciding with the annual rise in water temperature. The active spawning period was determined to be between April and May for E polyphekadion, in May for E. howlandi, and from March to June for E. tauvina.  相似文献   

8.
9.
10.
Cytokinin response regulators (RRs) are important components of the two component signal systems, which are involved in the regulation of plant growth and development, and in the response to abiotic stress. In this study, 18 cytokinin RR genes were identified in Fragaria vesca through the genome-wide search. They were further classified into three types: type-A (FvRR17), type-B (FvRR814) and type-C (FvRR1518) according to the domain architecture and the phylogeny. Phylogenetic analysis demonstrated that most cytokinin response regulators of F. vesca and Arabidopsis formed clear orthologous pairs. Expression patterns of the cytokinin FvRR genes in various tissues and organs at reproductive stages were detected in this study. Additionally, gene expression response patterns to ABA and abiotic stresses including high temperature and osmotic stress were investigated. The results showed that different types of cytokinin FvRRs have different expression patterns, suggesting the functional differentiation of cytokinin FvRRs during the evolution. This systematic study provides insights into possible functions of the cytokinin FvRR genes and a basis for further functional analysis.  相似文献   

11.
12.
Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.  相似文献   

13.
Sugars are important molecules that function not only as primary metabolites, but also as nutrients and signal molecules in plants. The sugar transport protein genes family SWEET has been recently identified. The availability of the Dendrobium officinale and Phalaenopsis equestris genome sequences offered the opportunity to study the SWEET gene family in this two orchid species. We identified 22 and 16 putative SWEET genes, respectively, in the genomes of D. officinale and P. equestris using comprehensive bioinformatics analysis. Based on phylogenetic comparisons with SWEET proteins from Arabidopsis and rice, the DoSWEET and PeSWEET proteins could be divided into four clades; among these, clade II specifically lacked PeSWEETs and clade IV specifically lacked DoSWEETs, and there were orthologs present between D. officinale and P. equestris. Protein sequence alignments suggest that there is a predicted serine phosphorylation site in each of the highly conserved MtN3/saliva domain regions. Gene expression analysis in four tissues showed that three PeSWEET genes were most highly expressed in the flower, leaf, stem, and root, suggesting that these genes might play important roles in growth and development in P. equestris. Analysis of gene expression in different floral organs showed that five PeSWEET genes were highly expressed in the column (gynostemium), implying their possible involvement in reproductive development in this species. The expression patterns of seven PeSWEETs in response to different abiotic stresses showed that three genes were upregulated significantly in response to high temperature and two genes were differently expressed at low temperature. The results of this study lay the foundation for further functional analysis of SWEET genes in orchids.  相似文献   

14.
Gene sequences mediating sexual reproduction are more divergent within and between closely related species. Microsatellite or simple sequence repeat (SSR) markers are valuable molecular tools for analysis of genetic variability, phylogeny, and also for identifying sex at seedling stage in dioecious plant species. Calamus travancoricus Bedd. ex. Becc. and Calamus nagbettai R.R.Fernald & Dey are economically important rattan species. The dioecious nature of the Calamus spp. limits its breeding and cultivation. The sex of rattans can only be identified after attaining reproductive maturity which ranges from 5 to 15 years. A study was carried out in this background and 9 putative sex-specific PCR products were identified as sex markers for C. travancoricus and C. nagbettai and sequenced by Sanger method. The sequence homology search revealed occurrence of identical sequences in many plant species across different families indicating the conserved nature of the sequences. However, these sequences were not present in opposite sex in the studied species, indicating divergent evolution favoring sex determination. Annotation of these sequences revealed that most of these are mediating sexual reproduction by and large. An adequate sex ratio is to be maintained for these dioecious palms in natural habitat for producing offsprings having equal gene complements for continual evolution and sustainable utilization. Developing scientific management strategies and improved utilization of canes could help to generate employment locally and thus contribute to the socioeconomics sustainably.  相似文献   

15.
16.

Background

Gonadal sex determination (GSD) in humans is a complex biological process that takes place in early stages of embryonic development when the bipotential gonadal primordium (BGP) differentiates towards testes or ovaries. This decision is directed by one of two distinct pathways embedded in a GSD network activated in a population of coelomic epithelial cells, the Sertoli progenitor cells (SPC) and the granulosa progenitor cells (GPC). In males, the pathway is activated when the Sex-Determining Region Y (SRY) gene starts to be expressed, whereas in females the WNT4/ β-catenin pathway promotes the differentiation of the GPCs towards ovaries. The interactions and dynamics of the elements that constitute the GSD network are poorly understood, thus our group is interested in inferring the general architecture of this network as well as modeling the dynamic behavior of a set of genes associated to this process under wild-type and mutant conditions.

Methods

We reconstructed the regulatory network of GSD with a set of genes directly associated with the process of differentiation from SPC and GPC towards Sertoli and granulosa cells, respectively. These genes are experimentally well-characterized and the effects of their deficiency have been clinically reported. We modeled this GSD network as a synchronous Boolean network model (BNM) and characterized its attractors under wild-type and mutant conditions.

Results

Three attractors with a clear biological meaning were found; one of them corresponding to the currently known gene expression pattern of Sertoli cells, the second correlating to the granulosa cells and, the third resembling a disgenetic gonad.

Conclusions

The BNM of GSD that we present summarizes the experimental data on the pathways for Sertoli and granulosa establishment and sheds light on the overall behavior of a population of cells that differentiate within the developing gonad. With this model we propose a set of regulatory interactions needed to activate either the SRY or the WNT4/ β-catenin pathway as well as their downstream targets, which are critical for further sex differentiation. In addition, we observed a pattern of altered regulatory interactions and their dynamics that lead to some disorders of sex development (DSD).
  相似文献   

17.
18.
The complete mitochondrial genome of Zhikong scallop Chlamys farreri is 21,695 bp in length and contains 12 protein-coding genes (the atp8 gene is absent, as in most bivalves), 2 ribosomal RNA genes, and 22 transfer RNA genes. The heavy strand has an overall A+T content of 58.7%. GC and AT skews for the mt genome of C. farreri are 0.337 and ?0.184, respectively, indicating the nucleotide bias against C and A. The mitochondrial gene order of C. farreri differs drastically from the scallops Argopecten irradians, Mimachlamys nobilis and Placopecten magellanicus, which belong to the same family Pectinidae. 6623 bp non-coding nucleotides exist intergenically in the mitogenome of C. farreri, with a large continuous sequence (4763 bp) between tRNA Val and tRNA Asn . Two repeat families are found in the large continuous sequence, which seems to be a common feature of scallops. Phylogenetic analysis based on 12 concatenated amino acid sequences of protein-coding genes supports the monophyly of Pectinidae and paraphyletic Pteriomorphia with respect to Heteroconchia.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号