首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Surface Plasmon Resonance biosensors measure the interaction between a molecule in solution and its interaction partner attached to a sensor surface. Under certain conditions, the observed binding rate can be used directly to obtain the concentration of the molecule in solution, without the use of any standard. This type of assay is referred to as Calibration Free Concentration Analysis, CFCA. By examining experimental conditions, including immobilization levels and temperature, for a range of analytes, and by using global analysis of several sample dilutions, conditions that gave the most robust results were identified. These conditions provided the concentration values that were on average ∼15% lower than those obtained using other methods. The accuracy of the concentration determined may be related to how the analyte is distributed in the dextran matrix and to its distance from the gold surface, and may thereby depend on the conversion of the SPR signal to mass. A good precision of CFCA, ∼8% (n = 21), was demonstrated when this method was used to efficiently guide purification procedures of Interferon α-2a. In this paper, the theory behind CFCA and the future developments, as well as the application of CFCA for absolute and relative concentration measurements (including the assessment of the potency of a biotherapeutic medicine) are discussed, and new evaluation tools that broaden the range of applications, are introduced.  相似文献   

2.
Protein concentration data are required for understanding protein interactions and are a prerequisite for the determination of affinity and kinetic properties. It is vital for the judgment of protein quality and for monitoring the effect of therapeutic agents. Protein concentration values are typically obtained by comparison to a standard and derived from a standard curve. The use of a protein standard is convenient, but may not give reliable results if samples and standards behave differently. In other cases, a standard preparation may not be available and has to be established and validated. Using surface plasmon resonance (SPR) biosensors, an alternative concentration method is possible. This method is called calibration-free concentration analysis (CFCA); it generates active concentration data directly and without the use of a standard. The active concentration of a protein is defined through its interaction with its binding partner. This concentration can differ from the total protein concentration if some protein fraction is incapable of binding. If a protein has several different binding sites, active concentration data can be established for each binding site using site-specific interaction partners. This review will focus on CFCA analysis. It will reiterate the theory of CFCA and describe how CFCA has been applied in different research segments. The major part of the review will, however, try to set expectations on CFCA and discuss how CFCA can be further developed for absolute and relative concentration measurements.  相似文献   

3.
Biophysical techniques such as size-exclusion chromatography, sedimentation equilibrium analytical ultracentrifugation, and non-denaturing gel electrophoresis are the classical methods for determining the self-association of molecules into dimers, trimers, or other higher order species. However, these techniques usually require high (mg/ml) loading concentrations to detect self-association and also possess a lower size limit that is dependent on the ability of the technique to resolve monomeric from higher order species. Here we describe a novel, sensitive method with no upper or lower molecular size limits that indicates self-association of molecules driven together by the hydrophobic effect under aqueous conditions. "Temperature profiling in reversed-phase chromatography" analyzes the retention behavior of a sample over the temperature range of 5-80 degrees C during gradient elution reversed-phase high-performance liquid chromatography. Because this technique greatly increases the effective concentration of analyte upon adsorption to the column, it is extremely sensitive, requiring very small sample quantities (microgram or less). In contrast, the classical techniques mentioned above decrease the effective analyte concentration during analysis, decreasing sensitivity by requiring larger amounts of analyte to detect molecular self-association. We demonstrate the utility of this technique with 14-residue cyclic and linear cationic peptides (<2000 Da) based on the sequence of the de novo-designed cytolytic peptide, GS14. The only requirements for the analyte molecule when using this technique are its ability to be retained on the reversed-phase column and to be subsequently removed from the column during gradient elution.  相似文献   

4.
Defining the self-association state of a molecule in solution can be an important step in NMR-based structure determination. This is particularly true of peptides, where there can be a relatively small number of long-range interactions and misinterpretation of an intermolecular NOE as an intramolecular contact can have a dramatic influence on the final calculated structure. In this paper, we have investigated the use of translational self-diffusion coefficient measurements to detect self-association in aqueous trifluoroethanol of three peptides which are analogues of the C-terminal region of human neuropeptide Y. Experimentally measured diffusion coefficients were extrapolated to D0, the limiting value as the peptide concentration approaches zero, and then converted to D20,w, the diffusion coefficient after correction for temperature and the viscosity of the solvent. A decrease in D20,w of about 16% was found for all three peptides in aqueous TFE (30% by volume) compared with water, which is in reasonable agreement with the expected decrease upon dimerisation, the presence of which was indicated by sedimentation equilibrium measurements. Apparent molecular masses of these peptides in both solutions were also calculated from their diffusion coefficients and similar results were obtained. Several potential internal standards, including acetone, acetonitrile, dimethylsulfoxide and dioxane, were assessed as monitors of solution viscosity over a range of trifluoroethanol concentrations. Compared with independent measurements of viscosity, acetonitrile was the most accurate standard among these four. The practical limitations of a quantitative assessment of peptide self-association from translational diffusion coefficients measured by PFGNMR, including the calculation of apparent molecular mass, are also discussed.  相似文献   

5.
In label-free biomolecular interaction analysis, a standard injection provides an injection of uniform analyte concentration. An alternative approach exploiting Taylor dispersion produces a continuous analyte titration allowing a full analyte dose response to be recorded in a single injection. The enhanced biophysical characterization that is possible with this new technique is demonstrated using a commercially available surface plasmon resonance-based biosensor. A kinetic interaction model was fitted locally to Taylor dispersion curves for estimation of the analyte diffusion coefficient in addition to affinity/kinetic constants. Statistical confidence in the measured parameters from a single Taylor dispersion injection was comparable to that obtained for global analysis of multiple standard injections. The affinity constants for multisite interactions were resolved with acceptable confidence limits. Importantly, a single analyte injection could be treated as a high-resolution real-time affinity isotherm and was demonstrated using the complex two-site interaction of warfarin with human serum albumin. In all three model interactions tested, the kinetic/affinity constants compared favorably with those obtained from standard kinetic analysis and the estimates of analyte diffusion coefficients were in good agreement with the expected values.  相似文献   

6.
The self-association of human growth hormone(hGH) was investigated using 15N NMR relaxation.The investigation relies on the 15N R1 and R2 relaxation rates and the heteronuclear{1H}-15N NOEs of the backbone amide groups at multiple protein concentrations. It is shown that the rotational correlation time of hGH in solution depends strongly on its concentration, indicating a significant degree of self-association.The self-association is reversible and the monomers in the aggregates are noncovalently linked. Extrapolation of the relaxation data to zero concentration predicts a correlation time of 13.4 ns and a rotational diffusion anisotropy of 1.26 for monomeric hGH, in agreement with the rotational diffusion properties estimated by hydrodynamic calculations. Moreover, the extrapolation allows characterization of the backbone dynamics of monomeric hGH without interference from self-association phenomena, and it is found that hGH is considerably more flexible than originally thought. A concerted least-squares analysis of the 15N relaxations and their concentration dependence reveals that the self-association goes beyond a simple monomer-dimer equilibrium, and that tetramers or other multimeric states co-exist in fast exchange with the monomeric and dimeric hGH at sub-millimolar concentrations. Small changes in the 1H and 15N amide chemical shifts suggest that a region around the C-terminus is involved in the oligomer formation.  相似文献   

7.
B. Chu  A. Yeh  F. C. Chen  B. Weiner 《Biopolymers》1975,14(1):93-109
We report measurements of the diffusion coefficient of β-lactoglobulin A (βLG-A) at pH = 5.60 and 4.58 in 0.10 ionic strength acetate buffer by the techniques of analog photocurrent signal correlation and digital single-clipped photon correlation. At a concentration of 21 mg/ml and a pH of 4.58, the self-association of β-lactoglobulin can be represented by a simple dimer–octamer equilibrium model. We determined the translational diffusion coefficient of the dimer and that of the octamer using the scattering results of Kumosinski and Timasheff in a dimer–octamer mixture. Our analysis shows that the dimer βLG-A does not change its size if the pH is varied from 5.60 to 4.58 and both species remain constant in size for temperature changes from 3.5° to 25°C Hydrodynamically, the octamers behave like closed-packed spheres with an effective radius of about 45 Å according to the Stokes-Einstein relation.  相似文献   

8.
The self-association of diisopropylphosphoryl(DIP)-alpha-chymotrypsin is studied in order to find out whether the active site of the enzyme is involved in its self-association behaviour or not. Sedimentation coefficient as well as the weight-average (Archibald) molecular weight data are obtained as a function of concentration using an analytical ultracentrifugation technique. The analysis indicated that the experimental data fits the model of indefinite self-association. The comparison of the data with earlier data on alpha-chymotrypsin revealed that after the modification at the active site, the association constant for the self-association is reduced by about 47%, and the system deviated from ideality. Results showed further that Ser-195, at the active site, appears to be involved in the self-association behaviour of alpha-chymotrypsin; however, the participation of other groups at the active site is also implicated.  相似文献   

9.
A new method based on Taylor dispersion has been developed that enables an analyte gradient to be titrated over a ligand-coated surface for kinetic/affinity analysis of interactions from a minimal number of injections. Taylor dispersion injections generate concentration ranges in excess of four orders of magnitude and enable the analyte diffusion coefficient to be reliably estimated as a fitted parameter when fitting binding interaction models. A numerical model based on finite element analysis, Monte Carlo simulations, and statistical profiling were used to compare the Taylor dispersion method with standard fixed concentration injections in terms of parameter correlation, linearity of parameter error space, and global versus local model fitting. A dramatic decrease in parameter correlations was observed for TDi curves relative to curves from standard fixed concentration injections when surface saturation was achieved. In FCI the binding progress is recorded with respect to injection time, whereas in TDi the second time dependency encoded in the analyte gradient increases resolving power. This greatly lowers the dependence of all parameters on each other and on experimental interferences. When model parameters were fitted locally, the performance of TDis remained comparable to global model fitting, whereas fixed concentration binding response curves yielded unreliable parameter estimates.  相似文献   

10.
On the basis of photon correlation experiments and computer simulations, we provide evidence for a rapid dimerization of the enzyme ribonuclease T1 isolated from an Escherichia coli overproducing strain. An attractive potential in addition to the usual repulsive hardcore and electrostatic potentials was found to be necessary for interpreting the concentration dependence of the diffusion coefficient of the enzyme. Computer searches of surface complementarity suggest that dimer formation of ribonuclease T1 takes place due to an extensive surface contact of approximately 700 A2. Energy minimization of the ribonuclease T1 dimer shows that large conformational changes are not induced upon self-association of the enzyme. The two molecules in the dimer are orientated back-to-back, and this is expected to lead to an active enzyme form.  相似文献   

11.
Nonlinear regression is used to fit the omega function vs. protein concentration curves (first described by B.K. Milthorpe, P.D. Jeffrey and L.W. Nichol, Biophys. Chem. 3 (1975) 169) obtained from sedimentation equilibrium experiments on self-associating macromolecules. Nonlinear regression allows the direct fit of these curves with discrete or indefinite self-association reaction models in order to obtain values for the equilibrium constants and second virial coefficient. The method is independent of the choice of reference concentration and avoids the original method of extrapolating an omega function curve to zero concentration and then using the extrapolated value to construct a monomer activity curve used for analysis. This extrapolation can become very difficult for mild to strong self-associations where incorrectly extrapolated values lead to systematic error in the monomer activity curves. The method is applied to results from a mild, indefinite self-association, exemplified by the self-association of human spectrin, and to computer-simulated data of weak, mild and strong, indefinite self-associations.  相似文献   

12.
The self-association of purified human spectrin has been studied at sedimentation equilibrium over a wide range of concentration (0-20 g/L) at 30 degrees C and pH 7.5. Coincidence of apparent weight average molecular weight and omega (r) plots as a function of total spectrin concentration indicated that equilibrium was attained and that no significant concentration of solute was incapable of participating in the self-association reaction. Under these conditions, no significant dissociation of the heterodimer to component polypeptide chains could be detected. The behavior of spectrin between 0 and 20 g/L can be described reasonably well by a cooperative isodesmic model, in which the protomer for association is the alpha beta heterodimer. With this model, the equilibrium constant for the heterodimer-tetramer step, K24, is 2 x 10(6) M-1, and K(iso), the equilibrium constant describing all other steps, is approximately 0.2 x 10(6) M-1. The returned value of the second virial coefficient for this model, 1.0 x 10(-7) L mol g-2, is consistent with the lower limit of values calculated for the heterodimer from the charge and Stokes radius of spectrin. On the other hand, the attenuated indefinite association model fails to describe the self-association of spectrin adequately over the range 0-20 g/L. Systematic decreases in the estimates of the second virial coefficient and the equilibrium constants for association beyond the tetramer suggest that the assumption of a single value of the second virial coefficient may not be appropriate for spectrin, and that non-ideality would best be taken into account by consideration of the detailed solution composition.  相似文献   

13.
A thermodynamic model for the self-association of human spectrin   总被引:1,自引:0,他引:1  
M Morris  G B Ralston 《Biochemistry》1989,28(21):8561-8567
The self-association of human spectrin at 28.8 degrees C in 0.11 M salt (pH 7.5) has been studied by means of sedimentation equilibrium. Coincidence of omega function plots as a function of total spectrin concentration (0-2 g/L) indicated that equilibrium was achieved and that no significant concentration of solute was incapable of participating in the self-association reaction. On the basis of the root-mean-square deviation of the fits and the randomness of the residuals, the behavior can be described equally well, either by a cooperative isodesmic model, in which K12 approximately 2 x 10(6) M-1 and all other K approximately 10(6) M-1, or by an attenuated scheme in which K(i-1)i approximately (3.5 x 10(6)/i M-1. The returned values of the second virial coefficient, B, for both these models fall within the range calculated from the charge and Stokes radius of spectrin. A mechanism for spectrin self-association consistent with both schemes is proposed in which spectrin heterodimers undergo a reversible opening at the self-association interface. These open heterodimers then undergo indefinite self-association to form a series of open-chain oligomers in dynamic equilibrium with closed-loop oligomers.  相似文献   

14.
We demonstrate a functional in vitro proof-of-principle homogeneous assay capable of detecting small (<1 kDa) to large (150 kDa) analytes using TEM-1 β-lactamase protein fragment complementation. In the assays reported here, complementary components are added together in the presence of analyte and substrate resulting in colorimetric detection within 10-min. We demonstrate the use of functional mutations leading to either increased enzymatic activity, reduced fragment self-association or increased inhibitor resistance upon analyte driven fragment complementation. Kinetic characterization of the resulting reconstituted enzyme illustrates the importance of balancing increased enzyme activity with fragment self-association, producing diagnostically relevant signal-to-noise ratios. Complementation can be utilized as a homogeneous immunoassay platform for the potential detection of a range of analytes including, antibodies, antigens and biomarkers.  相似文献   

15.
The transport of the antineoplastic drug doxorubicin (Adriamycin) in human red blood cells was investigated by measuring the net efflux from loaded cells. Previous data indicated that doxorubicin transport was a Fickian diffusion transport process of the electrically neutral molecule through the lipid domain of the cell membrane (Dalmark, 1981 [In press]). However, doxorubicin transport showed saturation kinetics and a concentration-dependent temperature dependence with nonlinear Arrhenius plots. The two phenomena were related to the doxorubicin partition coefficient between 1-octanol and a water phase. This relationship indicated that the two phenomena were caused by changes in the physiochemical properties of doxorubicin in the aqueous phase and were not caused by interaction of doxorubicin with cell membrane components. The physicochemical properties of doxorubicin varied with concentration and temperature because of the ability of doxorubicin to form polymers by self-association in aqueous solution like other planar aromatic molecules through pi-electron orbital interaction. The hypothesis is proposed that doxorubicin transport across cell membranes takes place by simple Fickian diffusion.  相似文献   

16.
Concentrated solutions of calf alpha-crystallin (up to 45 g/l) and gamma-crystallin (up to 67 g/l) were subjected to frontal exclusion chromatography at pH 7.3, ionic strength 0.17 and 20 degrees C. The experimental concentration dependence of the weight-average partition coefficient was compared with theoretical expressions, which include considerations of thermodynamic non-ideality effects, for the concentration dependence of a single solute and of a solute undergoing reversible self-association. Two types of association pattern were examined, discrete dimerization and indefinite self-association. The partition chromatography results are consistent with an indefinite self-association of gamma-crystallin, governed by an isodesmic association constant of 6.7 X 10(-3) l/g. alpha-Crystallin appears to self-associate either very weakly, with a maximal association constant of 0.9 X 10(-3) l/g, or not at all; the distinction depends on the assessment of the non-ideality coefficients. The consequences of excluded volume effects on these self-association equilibria at high total protein concentration are discussed. Mixtures of alpha-crystallin and gamma-crystallin were analyzed by frontal exclusion chromatography (up to 14 g/l) and sedimentation velocity (up to 115 g/l): no interaction was observed.  相似文献   

17.
The usefulness of laser light scattering as a technique for determining protein conformation has been investigated by studying the self-association and drug binding of bovine serum albumin (BSA). The diffusion coefficients of BSA monomers and dimers have been measured and the ratio of these two quantities indicates that in the dimer, the subunit separation is 2.2 times the monomeric hydrodynamic radius. The binding of salicylate to BSA causes an increase in its diffusion coefficient corresponding to a reduction in the frictional drag of the solvent on the protein molecules. It has been found that data obtained using laser light scattering may be interpreted confidently only when proper care has been taken in sample preparation and the scattered intensity autocorrelation function has been appropriately analyzed.  相似文献   

18.
The effect of high concentrations of proline on the diffusion coefficient of water has been examined to assess the extent to which the resulting thermodynamic nonideality could be explained on the statistical-mechanical basis of excluded volume. In fact, such a space-filling role not only accounts for the proline concentration-dependence of the diffusion coefficient of water but it also accounts for the nonideality of proline in freezing point depression and isopiestic measurements. These findings refute the conclusion (Schobert, B. and Tschesche, H. (1978) Biochim. Biophys. Acta 541, 270–277) that the stabilization of enzyme structure by high concentrations of proline stems from self-association of the imino acid via intermolecular hydrogen bonding; and thereby support the concept that the protective effect of proline on enzyme stability must reside mainly in its action as an inert, space-filling solute.  相似文献   

19.
We have studied the effect of macromolecular crowding reagents, such as polysaccharides and bovine serum albumin, on the refolding of tetradecameric GroEL from urea-denatured protein monomers. The results show that productive refolding and assembly strongly depends on the presence of nucleotides (ATP or ADP) and background macromolecules. Nucleotides are required to generate an assembly-competent monomeric conformation, suggesting that proper folding of the equatorial domain of the protein subunits into a native-like structure is essential for productive assembly. Crowding modulates GroEL oligomerization in two different ways. First, it increases the tendency of refolded, monomeric GroEL to undergo self-association at equilibrium. Second, crowding can modify the relative rates of the two competing self-association reactions, namely, productive assembly into a native tetradecameric structure and unproductive aggregation. This kinetic effect is most likely exerted by modifications of the diffusion coefficient of the refolded monomers, which in turn determine the conformational properties of the interacting subunits. If they are allowed to become assembly-competent before self-association, productive oligomerization occurs; otherwise, unproductive aggregation takes place. Our data demonstrate that the spontaneous refolding and assembly of homo-oligomeric proteins, such as GroEL, can occur efficiently (70%) under crowding conditions similar to those expected in vivo.  相似文献   

20.
Quantitative analysis of molecular diffusion is a necessity for the efficient design of most microfluidic devices as well as an important biophysical method in its own right. This study demonstrates the rapid measurement of diffusion coefficients of large and small molecules in a microfluidic device, the T-sensor, by means of conventional epifluorescence microscopy. Data were collected by monitoring the transverse flux of analyte from a sample stream into a second stream flowing alongside it. As indicated by the low Reynolds numbers of the system (< 1), flow is laminar, and molecular transport between streams occurs only by diffusion. Quantitative determinations were made by fitting data with predictions of a one-dimensional model. Analysis was made of the flow development and its effect on the distribution of diffusing analyte using a three-dimensional modeling software package. Diffusion coefficients were measured for four fluorescently labeled molecules: fluorescein-biotin, insulin, ovalbumin, and streptavidin. The resulting values differed from accepted results by an average of 2.4%. Microfluidic system parameters can be selected to achieve accurate diffusion coefficient measurements and to optimize other microfluidic devices that rely on precise transverse transport of molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号