首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Microbes and plants synthesize essential branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine via a common biosynthetic pathway in which the first reaction is catalyzed by acetohydroxyacid synthase (AHAS, EC 4.1.3.18). Recently, AHAS was identified as a potential anti bacterial target. To help find an effective inhibitor that could act as an antibacterial compound, we cloned and characterized the catalytic subunit (CSU) of Pseudomonas aeruginosa AHAS, and found four potent inhibitors through chemical library screening. The ilvI gene of P. aeruginosa encodes a 65-kDa AHAS protein, consistent with the size of the purified enzyme on SDS-PAGE. Enzyme kinetics showed that the enzyme has a Km of 14.2 mM and a specific activity of 0.12 U/mg. Enzyme activity was optimum at a temperature of 37 °C and a pH of 7.5. The Kd for thiamine diphosphate (ThDP) was 89.92 ± 17.9 μM, as determined by fluorescence quenching. The cofactor activation constants (Ks) for ThDP and (Kc) for Mg2+ were 0.6 ± 0.1 and 560.8 ± 7.4 μM, respectively. Further, we determined that AVS2087, AVS2093, AVS2236, and AVS2387 compounds are potent inhibitors of the catalytic subunit of P. aeruginosa AHAS. These compounds inhibit nearly 100% of AHAS activity, with IC50 values of 1.19 μM, 5.0 nM, 25 nM, and 13 nM, respectively. Compound AVS2093 showed growth inhibition with a minimal inhibitory concentration (MIC) of 742.9 μg/ml against P. aeruginosa strain ATCC 9027. Furthermore, these findings were supported by molecular docking studies with the AVS compounds against P. aeruginosa AHAS in which AVS2093 showed minimum binding energy (−7.8 kJ/mol) by interacting with the receptor through a single hydrogen bond of 2.873 Å. Correlation of AVS2093 activity with P. aeruginosa AHAS cell growth inhibition suggested that AHAS might serve as a target protein for the development of novel antibacterial therapeutics. Results of the current study provide an impetus to further evaluate the potency of these inhibitors against pathogenic P. aeruginosa strains in vivo and to design more potent antibacterial agents based on these AVS inhibitors.  相似文献   

2.
The aim of the present study was to examine the effects of CUDC-101, a novel histone deacetylase inhibitor, on the in vitro development and expression of the epigenetic marker histone H3 at lysine 9 (AcH3K9) in pig SCNT embryos. We found that treatment with 1 μmol/L CUDC-101 for 24 hours significantly improved the development of pig SCNT embryos. Compared with the control group, the blastocyst rate was higher (18.5% vs. 10.3%; P < 0.05). To assess in vivo developmental potency, CUDC-101–treated SCNT embryos were transferred into two surrogate mothers, resulting in one pregnancy with six fetuses. We then investigated the acetylation level of histone H3K9 in SCNT embryos treated with CUDC-101 and compared them only against untreated embryos. The acetylation level of control SCNT embryos was lower than that of CUDC-101–treated embryos at pseudo-pronuclear stages, and immunofluorescent signal for H3K9ac in CUDC-101–treated embryos in a pattern similar to that of control group. In conclusion, we demonstrated that CUDC-101 can significantly improve in vitro and in vivo developmental competence and enhance the nuclear reprogramming of pig SCNT embryos.  相似文献   

3.
Coxiella burnetii, an obligate intracellular bacterium of worldwide distribution, is responsible for Q fever. Domestic ruminants are the main source of infection for humans. The objectives of this study were to determine (1) whether C. burnetii would adhere to the intact zona pellucida (ZP-intact) of early in vitro–produced bovine embryos; (2) whether the bacteria would adhere to or infect the embryos (ZP-free) after in vitro infection; and (3) the efficacy of the International Embryo Transfer Society (IETS) washing protocol. One hundred and sixty, eight- to 16-cell bovine embryos produced in vitro, were randomly divided into 16 batches of 10 embryos. Twelve batches (eight ZP-intact and four ZP-free) were incubated in a medium containing C. burnetii CbB1 (Infectiologie Animale et Santé Publique, Institut National de Recherche Agronomique Tours, France). After 18 hours of incubation at 37 °C and 5% CO2 in air, the embryos were washed in 10 successive baths of a PBS and 5% fetal calf serum solution in accordance with the IETS guidelines. In parallel, four batches (two ZP-intact and two ZP-free) were subjected to similar procedures but without exposure to C. burnetii to act as controls. Ten washing fluids from each batch were collected and centrifuged for 1 hour at 13,000× g. The embryos and wash pellets were tested using conventional polymerase chain reaction. C. burnetii DNA was found in all ZP-intact and ZP-Free embryos after 10 successive washes. It was also detected in the first four washing fluids for ZP-intact embryos and in the 10th wash fluid for two of the four batches of ZP-free embryos. In contrast, none of the embryos or their washing fluids in the control batches were DNA positive. These results demonstrate that Cburnetii adheres to and/or penetrates the early embryonic cells and the ZP of in vitro bovine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS for bovine embryos, failed to remove it. The persistence of these bacteria after washing makes the embryo a potential means of transmission of the bacterium during embryo transfer from infected donor cows to healthy recipients and/or their offspring. Further studies are required to investigate whether enzymatic and/or antibiotic treatment of bovine embryos infected by C. burnetii would eliminate the bacteria from the ZP and to verify if similarly results are obtained with in vivo–derived embryos.  相似文献   

4.
Numerous studies have reported the implication of calcium-independent phospholipase A2 (iPLA2) in various biological mechanisms. Most of these works have used in vitro models and only a few have been carried out in vivo on iPLA2−/− mice. The functions of iPLA2 have been investigated in vivo in the heart, brain, pancreatic islets, and liver, but not in the retina despite its very high content in phospholipids. Phospholipids in the retina are known to be involved in several various key mechanisms such as visual transduction, inflammation or apoptosis. In order to investigate the implication of iPLA2 in these processes, this work was aimed to build an in vivo model of iPLA2 activity inhibition. After testing the efficacy of different chemical inhibitors of iPLA2, we have validated the use of bromoenol lactone (BEL) in vitro and in vivo for inhibiting the activity of iPLA2. Under in vivo conditions, a dose of 6 μg/g of body weight of BEL in mice displayed a 50%-inhibition of retinal iPLA2 activity 8–16 h after intraperitoneal administration. Delivering the same dose twice a day to animals was successful in producing a similar inhibition that was stable over one week. In summary, this novel mouse model exhibits a significant inhibition of retinal iPLA2 activity. This model of chemical inhibition of iPLA2 will be useful in future studies focusing on iPLA2 functions in the retina.  相似文献   

5.
On a global scale, cereal grains and animal feed may be contaminated with trichothecenes, such as deoxynivalenol and T-2 toxin, zearalenone (ZEA), and fumonisins, the major mycotoxins of Fusarium fungi. Of these mycotoxins, ZEA is unequivocally implicated in reproductive disorders of swine and other domestic animals. Experiments in vivo and in vitro indicate that ZEA and its metabolites exert estrogenic effects resulting in functional and morphological alterations in reproductive organs. Recently, the potential of trichothecenes and fumonisins to cause reproductive disorders in domestic animals has been investigated. The present review summarizes the toxicological data on the effects of Fusarium mycotoxins on ovarian function, testicular function, placenta and fetus, and puberty/sexual maturity of domestic animals. The results of in vivo animal studies and in vitro tests are reported and discussed.  相似文献   

6.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is the clinical syndrome of persistent lung inflammation caused by various direct and indirect stimuli. Despite advances in the understanding of disease pathogenesis, few therapeutic have emerged for ALI/ARDS. Thus, in the present study we evaluated the therapeutic potential of ethyl gallate (EG), a plant flavanoid in the context of ALI using in vivo (BALB/c) and in vitro models (human monocytes). Our in vivo data supports the view that EG alleviates inflammatory condition in ALI as significant reduction in BALF neutrophils, ROS, proinflammatory cytokines and albumin levels were observed with the single i.p of EG post LPS exposure. Also, histochemical analysis of mice lung tissue demonstrated that EG restored LPS stimulated cellular influx inside the lung airspaces. Unraveling the mechanism of action, our RT-PCR and western blot analysis suggest that enhanced expression of HO-1 underlies the protective effect of EG on ROS level in mice lung tissue. Induction of HO-1 in turn appears to be mediated by Nrf2 nuclear translocation and consequent activation and ablation of Nrf2 activity through siRNA notably abrogated the EG induced protective effect in LPS induced human monocytes. Furthermore, our results indicate that EG generated moderate amounts of H2O2 could induce Nrf2 translocation in the in vitro systems. However, given the insignificant amount of H2O2 recorded in the injected material in the in vivo system, additional mechanism for EG action could not be excluded. Nevertheless our results highlight the protective role of EG in ALI and provide the novel insight into its usefulness as a therapeutic tool for the treatment of ALI.  相似文献   

7.
Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3–7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.  相似文献   

8.
The objectives of this study were to investigate the immune response to intradermal immunization with wall teichoic acid (WTA) and the effect of MBL deficiency in a murine model of infection with methicillin-resistant Staphylococcus aureus (MRSA). WTA is a bacterial cell wall component that is implicated in invasive infection. We tested susceptibility to MRSA infection in wild type (WT) and MBL deficient mice using two strains of MRSA: MW2, a community-associated MRSA (CA-MRSA); and COL, a healthcare-associated MRSA (HA-MRSA). We also performed in vitro assays to investigate the effects of anti-WTA IgG containing murine serum on complement activation and bacterial growth in whole blood. We found that MBL knockout (KO) mice are relatively resistant to a specific MRSA strain, MW2 CA-MRSA, compared to WT mice, while both strains of mice had similar susceptibility to a different strain, COL HA-MRSA. Intradermal immunization with WTA elicited and augmented an anti-WTA IgG response in both WT and MBL KO mice. WTA immunization significantly reduced susceptibility to both MW2 CA-MRSA and COL HA-MRSA, independent of the presence of MBL. The protective mechanisms of anti-WTA IgG are mediated at least in part by complement activation and clearance of bacteria from blood. The significance of these findings is that 1) Intradermal immunization with WTA induces production of anti-WTA IgG; and 2) This anti-WTA IgG response protects from infection with both MW2 CA-MRSA and COL HA-MRSA even in the absence of MBL, the deficiency of which is common in humans.  相似文献   

9.
The isolation of lectins from Myracrodruon urundeuva bark (MuBL) and heartwood (MuHL) as well as the termiticidal activity of MuHL against Nasutitermes corniger has already been described. This work reports on the purification of a leaf lectin (MuLL) and the characterization of MuBL, MuHL, and MuLL; also described are the resistance of hemagglutinating activity of the three lectins to trypsin activity from N. corniger gut and the termiticidal activity on N. corniger of MuBL (LC50 of 0.974 mg ml−1 on workers and 0.787 mg ml−1 on soldiers) and MuLL (LC50 of 0.374 mg ml−1 on workers and 0.432 mg ml−1 on soldiers). The antibacterial effect of MuBL, MuHL, and MuLL on bacteria from gut of N. corniger was also investigated and lectins showed similar bacteriostatic activity (MIC of 62.5 ??g ml−1 for workers and 125 ??g ml−1 for soldiers). MuBL and MuHL were more efficient bactericidal agents on bacteria in the workers’ gut (MBC of 125 ??g ml−1) than MuLL (MBC of 250 ??g ml−1) and similar bactericidal activity was detected on bacteria in the gut of soldiers (MBC of 250 ??g ml−1). The termiticidal activity of M. urundeuva lectins can be explained by the chitin-binding property, resistance to termite digestive enzyme, and the antibacterial effect on symbiotic bacteria of N. corniger gut.  相似文献   

10.
Benzobisthiazole derivatives were identified as novel helicase inhibitors through high throughput screening against purified Staphylococcus aureus (Sa) and Bacillus anthracis (Ba) replicative helicases. Chemical optimization has produced compound 59 with nanomolar potency against the DNA duplex strand unwinding activities of both B. anthracis and S. aureus helicases. Selectivity index (SI = CC50/IC50) values for 59 were greater than 500. Kinetic studies demonstrated that the benzobisthiazole-based bacterial helicase inhibitors act competitively with the DNA substrate. Therefore, benzobisthiazole helicase inhibitors represent a promising new scaffold for evaluation as antibacterial agents.  相似文献   

11.
Frederik A.J. Rotsaert 《BBA》2008,1777(2):211-219
We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enzymes from the three species, amino acid sequence differences create sufficient structural differences so that there are striking differences in the inhibitors binding to the three enzymes. Antimycin is the most tightly bound of the three inhibitors, and binds stoichiometrically to the isolated enzymes from all three species under the cytochrome c reductase assay conditions. Ilicicolin H also binds stoichiometrically to the yeast enzyme, but binds approximately 2 orders of magnitude less tightly to the bovine enzyme and is essentially non-inhibitory to the Paracoccus enzyme. Funiculosin on the other hand inhibits the yeast and bovine enzymes similarly, with IC50 ∼ 10 nM, while the IC50 for the Paracoccus enzyme is more than 10-fold higher. Similar differences in inhibitor efficacy were noted in bc1 complexes from yeast mutants with single amino acid substitutions at the center N site, although the binding affinity of quinone and quinol substrates were not perturbed to a degree that impaired catalytic function in the variant enzymes. These results reveal a high degree of specificity in the determinants of ligand-binding at center N, accompanied by sufficient structural plasticity for substrate binding as to not compromise center N function. The results also demonstrate that, in principle, it should be possible to design novel inhibitors targeted toward center N of the bc1 complex with appropriate species selectivity to allow their use as drugs against pathogenic fungi and parasites.  相似文献   

12.
Here we report the design, chemical and recombinant synthesis, and functional properties of a series of novel inhibitors of human mast cell tryptase β, a protease of considerable interest as a therapeutic target for the treatment of allergic asthma and inflammatory disorders. These inhibitors are derived from a linear variant of the cyclic cystine knot miniprotein MCoTI-II, originally isolated from the seeds of Momordica cochinchinensis. A synthetic cyclic miniprotein that bears additional positive charge in the loop connecting the N- and C-termini inhibits all monomers of the tryptase β tetramer with an overall equilibrium dissociation constant Ki of 1 nM and thus is one of the most potent proteinaceous inhibitors of tryptase β described to date. These cystine knot miniproteins may therefore become valuable scaffolds for the design of a new generation of tryptase inhibitors.  相似文献   

13.
Monoacylglycerol acyltransferase 2 (MGAT2) is a membrane-bound lipid acyltransferase that catalyzes the formation of diacylglycerol using monoacylglycerol and fatty acyl CoA as substrates. MGAT2 is important for intestinal lipid absorption and is an emerging target for the treatment of metabolic diseases. In the current study, we identified and characterized four classes of novel MGAT2 inhibitors. We established both steady state and kinetic binding assay protocols using a novel radioligand, [3H]compound A. Diverse chemotypes of MGAT2 inhibitors were found to compete binding of [3H]compound A to MGAT2, indicating the broad utility of [3H]compound A for testing various classes of MGAT2 inhibitors. In the dynamic binding assays, the kinetic values of MGAT2 inhibitors such as Kon, Koff, and T1/2 were systematically defined. Of particular value, the residence times of inhibitors on MGAT2 enzyme were derived. We believe that the identification of novel classes of MGAT2 inhibitors and the detailed kinetic characterization provide valuable information for the identification of superior candidates for in vivo animal and clinical studies. The current work using a chemical probe to define inhibitory kinetics can be broadly applied to other membrane-bound acyltransferases.  相似文献   

14.
Current quality control of inactivated animal vaccines still focuses on the potency of final products in a batch-wise manner. Animal welfare concerns as well as scientific considerations have led to the ‘3Rs-concept’ that comprises the refinement of animal procedures, the reduction of animal numbers, and the replacement of animal models. Although the 3Rs-concept has been widely accepted as a fundamental principle, the number of approved alternatives for in vivo tests is still limited. To promote further progress, the international scientific workshop ‘Potency Testing of Veterinary Vaccines: The Way from in vivo to in vitro’ was held at the Paul-Ehrlich-Institut in Langen, Germany, on 01-03 December 2010. More than 130 participants from industry, academia and regulatory authorities discussed the current state of the 3Rs-concept, examples of its successful implementation as well as still existing hurdles. Special emphasis was laid on the ‘consistency approach’ that aims to ensure relevant quality attributes of vaccine batches by in vitro analyses during production rather than by in vivo potency tests on the final product. This report provides an overview of the insights gained, including the recommendations produced at the end of the workshop.  相似文献   

15.
《Phytomedicine》2014,21(8-9):1088-1091
STAT3 signaling pathway is an important target for human cancer therapy. Thus, the identification of small-molecules that target STAT3 signaling will be of great interests in the development of anticancer agents. The aim of this study was to identify novel inhibitors of STAT3 pathway from the roots of Zanthoxylum nitidum (Roxb.) DC. The bioassay-guided fractionation of MeOH extract of Z. nitidum using a STAT3-responsive gene reporter assay led to the isolation of angoline (1) as a potent and selective inhibitor of the STAT3 signaling pathway (IC50 = 11.56 μM). Angoline inhibited STAT3 phosphorylation and its target gene expression and consequently induced growth inhibition of human cancer cells with constitutively activated STAT3 (IC50 = 3.14–4.72 μM). This work provided a novel lead for the development of anti-cancer agents targeting the STAT3 signaling pathway.  相似文献   

16.
In an effort to develop novel antimicrobial agents against drug-resistant bacterial infections, 5,6-dihydroimidazo[2,1-b]thiazole compounds were synthesized and tested for their antimicrobial activity. Eight compounds comprised by two sub-scaffolds were identified as hits against methicillin-resistant Staphylococcus aureus (MRSA). These hits were modified at 6-position by replacing (S)-6 to (R)-6 configuration and the (R)-isomers increased their antimicrobial activities by two-fold. The most active compound showed a MIC90 value of 3.7 μg/mL against MRSA in a standard microdilution bacterial growth inhibitory assay. This compound protected wax moth worms against MRSA at a dose of 5× MIC using a worm infectious model. This compound also exhibited inhibition of DNA gyrase activity in a DNA gyrase supercoil assay, suggesting the 5,6-dihydroimidazo[2,1-b]thiazoles may target DNA gyrase for the antimicrobial action.  相似文献   

17.
The effects of temperatures (20–30 °C) and water activity (0.90–0.99 aw) on the lag phase duration, mycelial growth, and nutritional utilisation patterns of two toxigenic (AFL1+ & AFL2+) and three atoxigenic (AFL1, AFL2, & AFL3) Aspergillus flavus strains were evaluated in vitro. Both temperature and aw and their interactions had a significant influence on the growth and nutritional utilisation patterns (p < 0.05). There were no significant differences between toxigenic and atoxigenic strains in terms of lag phase prior to growth and mycelial growth rates. Based on carbon source (CS) utilisation patterns, toxigenic and atoxigenic strains' niche size was greater at higher temperatures and in wetter conditions. Additionally, based on niche overlap indices (NOIs), regardless of temperature, when water was freely available, atoxigenic and toxigenic strains co-existed. However, under moisture stress, the nutritional competitiveness was variable. Temporal carbon utilisation sequences (TCUS) of toxigenic and atoxigenic strains were compared. At 0.99 aw most CS sources were utilised by the strains and the time to detection (TTD) of each strain was shortest on monosaccharides at the same level of aw. Conversely, under moisture stress the least number of CS was utilised. The current study has demonstrated that carbon utilisation patterns are equally important as are other determinants of competitiveness and that growth rate alone is not a key attribute which determines competitiveness.  相似文献   

18.
O-GlcNAcylation is an essential posttranslational modification in metazoa. Modulation of O-GlcNAc levels with small molecule inhibitors of O-GlcNAc hydrolase (OGA) is a useful strategy to probe the role of this modification in a range of cellular processes. Here we report the discovery of novel, low molecular weight and drug-like O-GlcNAcase inhibitor scaffolds by high-throughput screening. Kinetic and X-ray crystallographic analyses of the binding modes with human/bacterial O-GlcNAcases identify some of these as competitive inhibitors. Comparative kinetic experiments with the mechanistically related human lysosomal hexosaminidases reveal that three of the inhibitor scaffolds show selectivity towards human OGA. These scaffolds provide attractive starting points for the development of non-carbohydrate, drug-like OGA inhibitors.  相似文献   

19.
20.
The O-GlcNAc modification is found on many nucleocytoplasmic proteins. The dynamic nature of O-GlcNAc, which in some ways is reminiscent of phosphorylation, has enabled investigators to modulate the stoichiometry of O-GlcNAc on proteins in order to study its function. Although several genetic and pharmacological methods for manipulating O-GlcNAc levels have been described, one of the most direct approaches of increasing global O-GlcNAc levels is by using small-molecule inhibitors of O-GlcNAcase (OGA). As the interest in increasing O-GlcNAc levels has grown, so too has the number of OGA inhibitors. This review provides an overview of the available methods of increasing O-GlcNAc levels, with a special emphasis on inhibition of OGA by small molecules. Known inhibitors of OGA are discussed with particular attention on those most suitable for cell-based biological studies. Several examples in which OGA inhibitors have been used to study the functional role of the O-GlcNAc modification in biological systems are discussed, highlighting the pros and cons of different inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号