首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monte Carlo simulations were used to describe the interaction of peripheral and integral proteins with lipids in terms of heat capacity profiles and protein distribution. The simulations were based on a two-state model for the lipid, representing the lipid state as being either gel or fluid. The interaction between neighboring lipids has been taken into account through an unlike nearest neighbor free energy term delta omega, which is a measure of the cooperativity of the lipid transition. Lipid/protein interaction was considered using the experimental observation that the transition midpoints of lipid membranes are shifted upon protein binding, a thermodynamic consequence of different binding constants of protein with fluid or gel lipids. The difference of the binding free energies was used as an additional parameter to describe lipid-protein interaction. The heat capacity profiles of lipid/protein complexes could be well described for both peripheral and integral proteins. Binding of proteins results in a shift and an asymmetric broadening of the melting profile. The model results in a coexistence of gel and fluid lipid domains in the proximity of the thermotropic transition. As a consequence, bound peripheral proteins aggregate in the temperature range of the lipid transition. Integral proteins induce calorimetric melting curves that are qualitatively different from that of peripheral proteins and aggregate in either gel or liquid crystalline lipid phase. The results presented here are in good agreement with calorimetric experiments on lipid-protein complexes and have implementations for the functional control of proteins.  相似文献   

2.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9699-9707
The selectivity of interaction between bovine spinal cord myelin basic protein (MBP) and eight different spin-labeled lipid species in complexes with dimyristoylphosphatidylglycerol (DMPG) and between spin-labeled phosphatidylglycerol and spin-labeled phosphatidylcholine in complexes of MBP with various mixtures of DMPG and dimyristoylphosphatidylcholine (DMPC) has been studied by electron spin resonance (ESR) spectroscopy. In DMPC/DMPG mixtures, the protein binding gradually decreased with increasing mole fraction of DMPC in a nonlinear fashion. The lipid-protein binding assays indicated a preferential binding of the protein to phosphatidylglycerol relative to phosphatidylcholine without complete phase separation of the two lipids. The outer hyperfine splittings (2Amax) of both phosphatidylglycerol and phosphatidylcholine labeled at C-5 of the sn-2 chain (5-PGSL and 5-PCSL, respectively) were monitored in the lipid-protein complexes as a function of the mole fraction of DMPC. The increases in the value of Amax induced on binding of the protein were larger for 5-PGSL than for 5-PCSL, up to 0.25 mole fraction of DMPC. Beyond this mole fraction the spectral perturbations induced by the protein were similar for both lipid labels. The ESR spectra of phosphatidylglycerol and phosphatidylcholine labeled at C-12 of the sn-2 chain were two component in nature, indicating indicating a direct interaction of the protein with the lipid chains, at mole fractions of DMPC up to 0.25. Quantitation of the motionally restricted spin-label population by spectral subtraction again indicated a preferential interaction of the protein with phosphatidylglycerol relative to phosphatidylcholine. Up to DMPC mode fractions of 0.25, the microenvironment of the protein was enriched in DMPG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
《Biophysical journal》2020,118(8):1887-1900
G protein-coupled receptors (GPCRs) are membrane-bound proteins that depend on their lipid environment to carry out their physiological function. Combined efforts from many theoretical and experimental studies on the lipid-protein interaction profile of several GPCRs hint at an intricate relationship of these receptors with their surrounding membrane environment, with several lipids emerging as particularly important. Using coarse-grained molecular dynamics simulations, we explore the lipid-protein interaction profiles of 28 different GPCRs, spanning different levels of classification and conformational states and totaling to 1 ms of simulation time. We find a close relationship with lipids for all GPCRs simulated, in particular, cholesterol and phosphatidylinositol phosphate (PIP) lipids, but the number, location, and estimated strength of these interactions is dependent on the specific GPCR as well as its conformational state. Although both cholesterol and PIP lipids bind specifically to GPCRs, they utilize distinct mechanisms. Interactions with PIP lipids are mediated by charge-charge interactions with intracellular loop residues and stabilized by one or both of the transmembrane helices linked by the loop. Interactions with cholesterol, on the other hand, are mediated by a hydrophobic environment, usually made up of residues from more than one helix, capable of accommodating its ring structure and stabilized by interactions with aromatic and charged/polar residues. Cholesterol binding to GPCRs occurs in a small number of sites, some of which (like the binding site on the extracellular side of transmembrane 6/7) are shared among many class A GPCRs. Combined with a thorough investigation of the local membrane structure, our results provide a detailed picture of GPCR-lipid interactions. Additionally, we provide an accompanying website to interactively explore the lipid-protein interaction profile of all GPCRs simulated to facilitate analysis and comparison of our data.  相似文献   

4.
Photosystem II (PSII) is a homodimeric protein-cofactor complex embedded in the thylakoid membrane that catalyses light-driven charge separation accompanied by the oxidation of water during oxygenic photosynthesis. Biochemical analysis of the lipid content of PSII indicates a number of integral lipids, their composition being similar to the average lipid composition of the thylakoid membrane. The crystal structure of PSII at 3.0 A resolution allowed for the first time the assignment of 14 integral lipids within the protein scaffold, all of them being located at the interface of different protein subunits. The reaction centre subunits D1 and D2 are encircled by a belt of 11 lipids providing a flexible environment for the exchange of D1. Three lipids are located in the dimerization interface and mediate interactions between the PSII monomers. Several lipids are located close to the binding pocket of the mobile plastoquinone Q(B), forming part of a postulated diffusion pathway for plastoquinone. Furthermore two lipids were found, each ligating one antenna chlorophyll a. A detailed analysis of lipid-protein and lipid-cofactor interactions allows to derive some general principles of lipid binding pockets in PSII and to suggest possible functional properties of the various identified lipid molecules.  相似文献   

5.
The influence of the liquid-expanded or liquid-condensed state of the lipid interface induced by changes of temperature on the lipid-protein interactions and their two-dimensional miscibility was studied for mixtures of melittin with different phospholipids (DPPC, DMPC, DOPC egg PC) and gangliosides (GM1, GD1a) in mixed monolayers at the air/145 mM NaCl interface. The critical amount of melittin at which a phase separation takes place in the mixed film increases as the glycosphingolipid or phospholipid is more liquid-expanded. The lipid-protein interaction increases the stability of both melittin and the lipid. The interaction of melittin with gangliosides is thermodynamically more favorable as these are more liquid-expanded. The interaction of melittin with phospholipids, on the other hand, is more favorable when the lipids are in the liquid-condensed state even if these films show lateral immiscibility at a lower proportion of protein compared to lipids in the liquid-expanded state. Hydration-dehydration effects in the polar head group region are likely to participate in these lipid-protein interactions.  相似文献   

6.
Lipid-protein particles ranging from 20 to 250 nm in diameter have been isolated from the cytosol of carnation petals by flotation centrifugation and also by ultrafiltration. The cytosolic lipid-protein particles resemble oil bodies, lipid-protein particles found in oil-bearing seeds, in that they contain triacylglycerol, are circumscribed by phospholipid that is not organized in a bilayer, appear to be derived from membranes and can be isolated by flotation. However, the cytosolic particles are distinguishable from oil bodies in that triacylglycerol is not the dominant lipid. Indeed, they contain a spectrum of lipids in addition to phospholipids and triacylglycerol including free fatty acids, sterol and wax esters, phosphatidic acid and diacylglycerol. These same lipids are present in corresponding microsomal membranes as well, but in much smaller proportions relative to phospholipid. The lipid-protein particles from carnation petals contain a 17-kDa protein that is of similar size to oil body oleosin, but does not cross-react with anti-oleosin antibodies. The data indicate that these cytosolic particles are structurally and chemically similar to oil bodies and are consistent with the notion that their genesis may be a means of removing destabilizing lipids from membrane bilayers.  相似文献   

7.
Genetic analysis suggests that the TGD2 protein of Arabidopsis is required for the biosynthesis of endoplasmic reticulum derived thylakoid lipids. TGD2 is proposed to be the substrate-binding protein of a presumed lipid transporter consisting of the TGD1 (permease) and TGD3 (ATPase) proteins. The TGD1, -2, and -3 proteins are localized in the inner chloroplast envelope membrane. TGD2 appears to be anchored with an N-terminal membrane-spanning domain into the inner envelope membrane, whereas the C-terminal domain faces the intermembrane space. It was previously shown that the C-terminal domain of TGD2 binds phosphatidic acid (PtdOH). To investigate the PtdOH binding site of TGD2 in detail, the C-terminal domain of the TGD2 sequence lacking the transit peptide and transmembrane sequences was fused to the C terminus of the Discosoma sp. red fluorescent protein (DR). This greatly improved the solubility of the resulting DR-TGD2C fusion protein following production in Escherichia coli. The DR-TGD2C protein bound PtdOH with high specificity, as demonstrated by membrane lipid-protein overlay and liposome association assays. Internal deletion and truncation mutagenesis identified a previously undescribed minimal 25-amino acid fragment in the C-terminal domain of TGD2 that is sufficient for PtdOH binding. Binding characteristics of this 25-mer were distinctly different from those of TGD2C, suggesting that additional sequences of TGD2 providing the proper context for this 25-mer are needed for wild type-like PtdOH binding.  相似文献   

8.
Studies of lipid-protein interactions in double-reconstituted systems involving both integral and peripheral or lipid-anchored proteins are reviewed. Membranes of dimyristoyl phosphatidylglycerol containing either myelin proteolipid protein or cytochrome c oxidase were studied. The partner peripheral proteins bound to these membranes were myelin basic protein or cytochrome c, respectively. In addition, the interactions between the myelin proteolipid protein and avidin that was membrane-anchored by binding to N-biotinyl phosphatidylethanolamine were studied in dimyristoyl phosphatidylcholine membranes. Steric exclusion plays a significant role when sizes of the peripheral protein and transmembrane domain of the integral protein are comparable. Even so, the effects on avidin-linked lipids are different from those induced by myelin basic protein on freely diffusible lipids, both interacting with the myelin proteolipid protein. Both the former and the cytochrome c/cytochrome oxidase couple evidence a propagation of lipid perturbation out from the intramembrane protein interface that could be a basis for formation of microdomains.  相似文献   

9.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

10.
PDC-109, the major heparin-binding protein of bull seminal plasma, binds specifically to sperm choline lipids at ejaculation and mediates capacitation by stimulating cholesterol and phospholipid efflux. We carried out a biophysical study to investigate the membrane perturbation effect caused by PDC-109. Binding of PDC-109 to phosphatidylcholine model membranes was maximal at a 12:1 phosphatidylcholine to protein molar ratio. The process was independent of the membrane structure and involved a slight conformational change of the protein, compatible with an increased exposure to the solvent. PDC-109 binding to dimyristoylphosphatidylcholine prevented lipid molecules from participating in the gel-to-liquid phase transition, due to enhancement of both acyl chain disorder and interfacial hydration. Visualization of the lipid-protein complexes by electron microscopy showed surface irregularities and the presence of 10-nm particles. Permeability assays confirmed the PDC-109-induced disruption of the vesicles. This effect was not modified by heparin. However, presence of cholesterol inhibited the process in a concentration-dependent manner.  相似文献   

11.
Photosystem II (PSII) is a homodimeric protein-cofactor complex embedded in the thylakoid membrane that catalyses light-driven charge separation accompanied by the oxidation of water during oxygenic photosynthesis. Biochemical analysis of the lipid content of PSII indicates a number of integral lipids, their composition being similar to the average lipid composition of the thylakoid membrane. The crystal structure of PSII at 3.0 Å resolution allowed for the first time the assignment of 14 integral lipids within the protein scaffold, all of them being located at the interface of different protein subunits. The reaction centre subunits D1 and D2 are encircled by a belt of 11 lipids providing a flexible environment for the exchange of D1. Three lipids are located in the dimerization interface and mediate interactions between the PSII monomers. Several lipids are located close to the binding pocket of the mobile plastoquinone QB, forming part of a postulated diffusion pathway for plastoquinone. Furthermore two lipids were found, each ligating one antenna chlorophyll a. A detailed analysis of lipid-protein and lipid-cofactor interactions allows to derive some general principles of lipid binding pockets in PSII and to suggest possible functional properties of the various identified lipid molecules.  相似文献   

12.
The effect of the self-association of apolipoprotein A-I on the dynamics of lipid-protein complex formation was studied. Treatment of self-associated apolipoprotein A-I with guanidine hydrochloride initially resulted in dissociation of the oligomers into monomers and subsequent denaturation of the monomers. The association of monomeric and oligomeric apolipoprotein A-I with dimyristoylphosphatidylcholine resulted in identical lipid-protein recombinants as determined by chemical analysis and gel-filtration column elution profiles. Denaturation of a recombinant with guanidine hydrochloride indicated that the protein is more stable in a lipid-protein recombinant than as an oligomer; however, self-association does decrease the rate of lipidprotein recombinant formation. Because apolipoprotein A-I is more stable when it is associated with lipid, we conclude that the association of this protein with a variety of lipids is subject to kinetic control.  相似文献   

13.
Contradictory results have been reported with respect to the depth of penetration and the orientation of pulmonary surfactant protein SP-B in phospholipid membranes and its relative selectivity to interact with anionic over zwitterionic phospholipid species. In the present study we have re-evaluated lipid-protein interactions of SP-B by analysing F?rster resonance energy transfer (FRET) efficiencies, obtained from time-resolved measurements, from the single tryptophan in SP-B to different fluorescently labelled phospholipids in matrix bilayers made of either pure phosphatidylcholine (POPC) or the full lipid extract obtained from purified surfactant. In the background of POPC membranes SP-B exhibits a certain level of selectivity for anionic fluorescent phospholipids over the corresponding zwitterionic analogues, but apparently no preference for phosphatidylglycerol over other anionic species such as phosphatidylserine. No selectivity was detected in membranes made of full surfactant lipids, indicating that specific lipid-protein binding sites could already be occupied by endogenous anionic phospholipids. Furthermore, we have analysed the fit of two different models of how SP-B could be orientated with respect to phospholipid membrane surfaces to the FRET data. The FRET results are consistent with topology models in which the protein has a superficial orientation, with no regions of exclusion by the protein to the access of phospholipids, both in POPC membranes and in membranes made of the whole surfactant lipid fraction. This discards a deep penetration of the protein into the core of bilayers and suggests that most hydrophobic segments of SP-B could participate in protein-protein instead of lipid-protein interactions.  相似文献   

14.
Reconstituted membrane systems of synthetic phosphatidylcholines and the integral membrane enzyme cytochrome c oxidase were prepared in order to conduct nuclear magnetic resonance studies of lipid-protein interactions. These lipids, labeled with a geminate difluoro group on the 1-position hydrocarbon chain, were combined with the enzyme to give active lipid-protein particles with a well-defined ratio of lipid to protein. The fluorine magnetic resonance spectra of a series of preparations with different lipid/protein ratios suggest that the hydrocarbon chain mobility of the lipid is substantially reduced with increasing amounts of protein. The fluorine spectra of a single lipid-protein preparation show a dramatic increase in the number of the more mobile lipid chains with increasing temperature. The results suggest that the enzyme orders the lipid bilayer well beyond those lipids in direct contact with the protein surface, and that the amount of the lipid restricted by the enzyme is dependent upon temperature. The exchange of lipid between the restricted and the more mobile lipid environments most probably does not occur over the time scale measurable by the magnetic resonance techniques, about 10(-3) s.  相似文献   

15.
Most of the lipid components of hepatitis B surface antigen (HBsAg) can be removed by treatment with the non-ionic non-denaturing detergent beta-D-octyl glucoside (OG) followed by centrifugation through caesium chloride linear density gradients (density 1.15-1.32 g/ml). The conformational changes induced by the elimination of lipids decreased the helical content of HBsAg proteins from 52 to 28% as indicated by c.d. techniques. Measurements of the extent of quenching of protein fluorescence by iodide showed that half of the tryptophan residues which are buried in the native structure of HBsAg particles are brought close to the surface of the molecule by such conformational changes. The antigenic activity, as measured by binding to polyclonal antibodies, was decreased upon removal of lipids. Moreover, the six different antigenic sites recognized by our panel of monoclonal antibodies decreased their capacity to bind to the corresponding antibody when lipids were removed. However, the extent of this decrease differed for the different antibodies. Thus the apparent dependence of antibody binding on the lipid content seemed to indicate a greater involvement of the lipid-protein interaction for some of the epitopes than for others.  相似文献   

16.
In aqueous solution bovine myelin basic protein exhibits no significant alpha-helical or beta-pleated sheet structure. However, in vivo this protein is associated largely with the myelin membrane: experiments have therefore been performed to determine the structure of the protein when bound to lipid bilayers. Circular dichroism spectra show that this protein undergoes a major conformational change on binding to lipid bilayer vesicles formed from diacylphosphatidylserine or diacylphosphatidic acid, and on binding to micelles of several detergents. Association with diacylphosphatidylcholine failed to induce a structural change: this observation is interpreted in terms of an earlier report that lysophosphatidylcholine does increase the alpha-helical content of basic protein. These circular dichroism measurements and studies of the binding to the bilayer-forming lipids appear to provide support for significant hydrophobic lipid-protein interactions. Similar studies using two peptides produced by cleavf basic protein indicate that a major structure-forming region in the middle of the protein has been disrupted by this scission.  相似文献   

17.
The distribution of lipids in tears is critical to their function. Lipids in human tears may retard evaporation by forming a surface barrier at the air interface. Lipids complexed with the major lipid binding protein in tears, tear lipocalin, reside in the bulk (aqueous) and may have functions unrelated to the surface. Many new lipids species have been revealed through recent mass spectrometric studies. Their association with lipid binding proteins has not been studied. Squalene, (O-acyl) omega-hydroxy fatty acids (OAHFA) and ceramides are examples. Even well-known lipids such as wax and cholesteryl esters are only presumed to be unbound because extracts of protein fractions of tears were devoid of these lipids. Our purpose was to determine by direct binding assays if the aforementioned lipids can bind tear lipocalin. Lipids were screened for ability to displace DAUDA from tear lipocalin in a fluorescence displacement assay. Di- and tri-glycerides, squalene, OAHFA, wax and cholesterol esters did not displace DAUDA from tear lipocalin. However, ceramides displaced DAUDA. Apparent dissociation constants for ceramide-tear lipocalin complexes using fluorescent analogs were measured consistently in the submicromolar range with 3 methods, linear spectral summation, high speed centrifugal precipitation and standard fluorescence assays. At the relatively small concentrations in tears, all ceramides were complexed to tear lipocalin. The lack of binding of di- and tri-glycerides, squalene, OAHFA, as well as wax and cholesterol esters to tear lipocalin is consonant with residence of these lipids near the air interface.  相似文献   

18.
Annular lipid-protein stoichiometry in native pig kidney Na+/K+ -ATPase preparation was studied by [125I]TID-PC/16 labeling. Our data indicate that the transmembrane domain of the Na+/K+ -ATPase in the E1 state is less exposed to the lipids than in E2, i.e., the conformational transitions are accompanied by changes in the number of annular lipids but not in the affinity of these lipids for the protein. The lipid-protein stoichiometry was 23 ± 2 (α subunit) and 5.0 ± 0.4 (β subunit) in the E1 conformation and 32 ± 2 (α subunit) and 7 ± 1 (β subunit) in the E2 conformation.  相似文献   

19.
Dihedral torsion angles evaluated for the phospholipid molecules resolved in the X-ray structures of transmembrane proteins in crystals are compared with those of phospholipids in bilayer crystals, and with the phospholipid conformations in fluid membranes. Conformations of the lipid glycerol backbone in protein crystals are not restricted to the gauche C1-C2 rotamers found invariably in phospholipid bilayer crystals. Lipid headgroup conformations in protein crystals also do not conform solely to the bent-down conformation, with gauche-gauche configuration of the phospho-diester, that is characteristic of phospholipid bilayer membranes. This suggests that the lipids that are resolved in crystals of membrane proteins are not representative of the entire lipid-protein interface. Much of the chain configurational disorder of the membrane-bound lipids in crystals arises from energetically disallowed skew conformations. This indicates a configurational heterogeneity in the lipids at a single binding site: eclipsed conformations occur also in some glycerol backbone torsion angles and C-C torsion angles in the lipid headgroups. Stereochemical violations in the protein-bound lipids are evidenced by one-third of the ester carboxyl groups in non-planar configurations, and certain of the carboxyls in the cis configuration. Some of the lipid structures in protein crystals have the incorrect enantiomeric configuration of the glycerol backbone, and many of the branched methyl groups in structures of the phytanyl chains associated with bacteriorhodopsin crystals are in the incorrect S-configuration.  相似文献   

20.
M Drees  K Beyer 《Biochemistry》1988,27(23):8584-8591
The interaction of spin-labeled phospholipids with the detergent-solubilized ADP/ATP carrier protein from the inner mitochondrial membrane has been investigated by electron spin resonance spectroscopy. The equilibrium binding of cardiolipin and phosphatidic acid was studied by titration of the protein with spin-labeled phospholipid analogues using a spectral subtraction protocol for the evaluation of the mobile and immobilized lipid portions. This analysis revealed the immobilization of two molecules of spin-labeled cardiolipin per protein dimer. Phosphatidic acid has a similar affinity for the protein surface as cardiolipin. The lipid-protein interaction was less pronounced with the neutral phospholipids and with phosphatidylglycerol. The importance of the electrostatic contribution to the phospholipid-protein interaction shows up with a strong dependence of the lipid binding on salt concentration. Cleavage by phospholipase A2 and spin reduction by ascorbate of the spin-labeled acidic phospholipids in contact with the protein surface suggest that these lipids are located on the outer perimeter of the protein. At reduced detergent concentration, the protein aggregated upon addition of small amounts of cardiolipin but remained solubilized when more cardiolipin was added. This result is discussed with respect to the aggregation state of the protein in the mitochondrial membrane. It is also tentatively concluded that binding of spin-labeled cardiolipin does not displace the tightly bound cardiolipin of mitochondrial origin, which was detected previously by 31P nuclear magnetic resonance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号