首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《MABS-AUSTIN》2013,5(6):664-672
Antibodies are a unique class of proteins with the ability to adapt their binding sites for high affinity and high specificity to a multitude of antigens. Many analyses have been performed on antibody sequences and structures to elucidate which amino acids have a predominant role in antibody interactions with antigens. These studies have generally not distinguished between amino acids selected for broad antigen specificity in the primary immune response and those selected for high affinity in the secondary immune response. By studying a large data set of affinity matured antibodies derived from in vitro directed evolution experiments, we were able to specifically highlight a subset of amino acids associated with affinity improvements. In a comparison of affinity maturations using either tailored or full amino acid diversification, the tailored approach was found to be at least as effective at improving affinity while requiring fewer mutagenesis libraries than the traditional method. The resulting sequence data also highlight the potential for further reducing amino acid diversity for high affinity binding interactions.  相似文献   

2.
Antibodies are a unique class of proteins with the ability to adapt their binding sites for high affinity and high specificity to a multitude of antigens. Many analyses have been performed on antibody sequences and structures to elucidate which amino acids have a predominant role in antibody interactions with antigens. These studies have generally not distinguished between amino acids selected for broad antigen specificity in the primary immune response and those selected for high affinity in the secondary immune response. By studying a large data set of affinity matured antibodies derived from in vitro directed evolution experiments, we were able to specifically highlight a subset of amino acids associated with affinity improvements. In a comparison of affinity maturations using either tailored or full amino acid diversification, the tailored approach was found to be at least as effective at improving affinity while requiring fewer mutagenesis libraries than the traditional method. The resulting sequence data also highlight the potential for further reducing amino acid diversity for high affinity binding interactions.  相似文献   

3.
The long-term response to directional selection and its selection limit are derived for a quantitative character that is controlled by pleiotropic mutations with direct deleterious effect on fitness. Directional selection is assumed to be weaker than the selection acting directly on mutations via deleterious effects (purging selection), which renders all mutations to eventual elimination. The analysis embedding this restrictive assumption indicates that the evolutionary response of the character starting from an equilibrium state, in which mutation and purging selection balance but no directional selection is operating, decreases monotonically with time at an exponential rate. And the fading rate of responses is mostly determined by the direct deleterious effect. Contrary to the expectation by the standard selection limit theory based on fixation of extant genetic variation, the present model predicts that the selection limit depends on the intensity of directional selection, the limit being proportional to the ratio of the directional selection intensity to the direct deleterious effect. A slightly larger genetic variance is maintained at the selection limit than would be without directional selection.  相似文献   

4.
A high-performance liquid chromatographic method based on C18 solid-phase extraction and ultraviolet detection at 323 nm of analytes derivatized with benzoic anhydride and 1,2,4-triazole mercuric chloride solution was developed for the simultaneous determination of amoxicillin, penicillin G (benzylpenicillin), ampicillin, oxacillin, cloxacillin and dicloxacillin residues in raw milk. The detection limit of the method was 1.3 μg/l for penicillin G; 1.4 μg/l for amoxicillin, oxacillin and cloxacillin, 1.5 μg/l for ampicillin and 2.7 μg/l for dicloxacillin. The mean recovery was 95–102% for amoxicillin, penicillin G and ampicillin, 92–98% for oxacillin and cloxacillin and 87–94% for dicloxacillin, measured by using an internal standard. The relative repeatability standard deviation was 4–9% on level 4–15 μg/l, respectively, 2–7% on level 30–40 μg/l.  相似文献   

5.
实验通过DNA重组技术从一株可中和破伤风毒素的人源单克隆抗体细胞(G6)中扩增出了抗体VH、VL的基因,通过重叠PCR使连接片段与VH、VL连接成单链ScFv。经测序证实VH、VL为抗体的可变区序列,命名为ScFv-G6。将ScFv-G6连接转化PET/26b质粒,构建了抗体的表达载体,被命名为PET/26b/ScFv-G6。以该载体在大肠杆菌中分泌表达产物经Ni-亲和柱纯化后的小鼠试验证实,可抵抗破伤风毒素的攻击,表明为中和抗体。具有组织穿透力强,不易过敏,可直接靶向于毒素等特点,适合于破伤风的防治,具有重要的应用价值。  相似文献   

6.
Abstract.— Certain arguments concerning the evolution of eusociality form a classic example of the application of the principles of kin selection. These arguments center on the different degrees of relatedness of potential beneficiaries of an individual's efforts, for example a female's higher relatedness to her sisters than to her daughters in a haplodiploid system. This type of reasoning is insufficient to account for the evolution and maintainence of sexual reproduction, because parthenogenic females produce offspring that are more closely related to them than are offspring produced sexually. Among the forces invoked to explain sexual reproduction is deleterious mutation. This factor can be shown to favor eusociality as well, because siblings produced by helping carry fewer deleterious alleles on average than would offspring. The strength of this effect depends on the genomewide deleterious mutation rate, U, and on the selection coefficient, s, associated with deleterious alleles. For small s, the effect depends approximately on the product Us. This phenomenon illustrates that an assumption implicit in some analyses–that the relatedness of an individual to an actor is all that matters to its value to that actor–can fail for the evolution of eusociality as it does for the evolution of sex.  相似文献   

7.
8.
A variety of models propose that the accumulation of deleterious mutations plays an important role in the evolution of breeding systems. These models make predictions regarding the relative rates of protein evolution and deleterious mutation in taxa with contrasting modes of reproduction. Here we compare available coding sequences from one obligately outcrossing and two primarily selfing species of Caenorhabditis to explore the potential for mutational models to explain the evolution of breeding system in this clade. If deleterious mutations interact synergistically, the mutational deterministic hypothesis predicts that a high genomic deleterious mutation rate (U) will offset the reproductive disadvantage of outcrossing relative to asexual or selfing reproduction. Therefore, C. elegans and C. briggsae (both largely selfing) should both exhibit lower rates of deleterious mutation than the obligately outcrossing relative C. remanei. Using a comparative approach, we estimate U to be equivalent (and < 1) among all three related species. Stochastic mutational models, Muller's ratchet and Hill-Robertson interference, are expected to cause reductions in the effective population size in species that rarely outcross, thereby allowing deleterious mutations to accumulate at an elevated rate. We find only limited support for more rapid molecular evolution in selfing lineages. Overall, our analyses indicate that the evolution of breeding system in this group is unlikely to be explained solely by available mutational models.  相似文献   

9.
We present a new approach for analyzing directional mutation pressure and nucleotide content in protein-coding genes. Directional mutation pressure, the heterogeneity in the likelihood of different nucleotide substitutions, is used to explain the increasing or decreasing guanine-cytosine content (GC%) in DNA and is represented by µD, in agreement with Sueoka (1962, Proc Natl Acad Sci USA 48:582–592). The new method uses simulation to facilitate identification of significant A + T or G + C pressure as well as the comparison of directional mutation pressure among genes, even when they are translated by different genetic codes. We use the method to analyze the evolution of directional mutation pressure and nucleotide content of mitochondrial cytochrome b genes. Results from a survey of 110 taxa indicate that the cytochrome b genes of most taxa are subjected to significant directional mutation pressure and that the gene is subject to A + T pressure in most cases. Only in the anseriform bird Cairina moschata is the cytochrome b gene subject to significant G + C pressure. The GC% at nonsynonymous codon sites decreases proportionately with increasing A + T pressure, and with a slope less than one, indicating a presence of selective constraints. The cytochrome b genes of insects, nematodes, and eumycotes are subject to extreme A + T pressures (µD = 0.123, 0.224, and 0.130) and, in parallel, the GC% of the nonsynonymous codon sites has decreased from about 0.44 in organisms that are not subjected to A + T or G + C pressure to about 0.332, 0.323, and 0.367, respectively. The distribution of taxa according to the GC% at nonsynonymous codon sites and directional mutation pressure supports the notion that variation in these parameters is a phylogenetic component.  相似文献   

10.
Male-biased mutation, sex linkage, and the rate of adaptive evolution   总被引:3,自引:0,他引:3  
An interaction between sex-linked inheritance and sex-biased mutation rates may affect the rate of adaptive evolution. Males have much higher mutation rates than females in several vertebrate and plant taxa. When evolutionary rates are limited by the supply of favorable new mutations, then genes will evolve faster when located on sex chromosomes that spend more time in males. For mutations with additive effects, Y-linked genes evolve fastest, followed by Z-linked genes, autosomal genes, X-linked genes, and finally W-linked and cytoplasmic genes. This ordering can change when mutations show dominance. The predicted differences in substitution rates may be detectable at the molecular level. Male-biased mutation could cause adaptive changes to accumulate more readily on certain kinds of chromosomes and favor animals with Z-W sex determination to have rapidly evolving male sexual displays.  相似文献   

11.
The beta-lactam antibiotics have been serving mankind for over 70 years. Despite this old age, they continue to provide health to the world population by virtue of industrial production and discoveries of new secondary metabolite molecules with useful activities. Sales of these remarkable compounds have reached over $20 billion dollars per year. They include penicillins, cephalosporins, cefoxitin, monobactams, clavulanic acid and carbapenems. Strain improvement of the penicillin-producing species of Penicillium has been truly remarkable, with present strains producing about 100,000 times more penicillin that the original Penicillium notatum of Alexander Fleming. A tremendous amount of information has been gathered on the biosynthetic enzymes involved, the pathways of biosynthesis of beta-lactams as well as their regulation, and the genomics and proteomics of the producing organisms. Modern aspects of the processes are discussed in the present review including genetics, molecular biology, metabolic engineering, genomics and proteomics.  相似文献   

12.
Hepatitis A virus (HAV) is a wide spread pathogenic agent and is the common cause of acute Hepatitis A worldwide. Passive immunization of HAV plays an extremely important role in post-exposure prophylaxis with clinical applications often requiring large amounts of antibody. As an alternative to the in vitro production of recombinant proteins, expression of monoclonal antibodies (mAbs) in the milk of transgenic animals is currently used being associated with low production costs and high activity. In this paper, eight founder lines of transgenic mice were generated by co-microinjection of the two cassettes encoding the heavy- and light-chains of a neutralizing anti-HAV antibody, respectively. The expressed heavy- and light-chains of the mAb were correctly assembled and modified in the mammary gland as detected by western blotting. High expression levels of the antibody were achieved during the lactation period and found to be independent of the copy numbers of integrated transgenes. The highest level was up to 32.2 mg/ml. The binding specificity and neutralizing activity of the expressed mAb were assayed by ELISA and neutralizing test, showing that it is capable to neutralize the JN strain of Hepatitis A virus efficiently. Therefore, our results suggest that a large-scale and efficient production of the anti-HAV mAb in the milk of transgenic farm animals would be feasible in the future.  相似文献   

13.
Using a general form of the directional mutation theory, this paper analyzes the effect of mutations in mutator genes on the G + C content of DNA, the frequency of substitution mutations, and evolutionary changes (cumulative mutations) under various degrees of selective constraints. Directional mutation theory predicts that when the mutational bias between A/T and G/C nucleotide pairs is equilibrated with the base composition of a neutral set of DNA nucleotides, the mutation frequency per gene will be much lower than the frequency immediately after the mutator mutation takes place. This prediction explains the wide variation of the DNA G + C content among unicellular organisms and possibly also the wide intragenomic heterogeneity of third codon positions for the genes of multicellular eukaryotes. The present analyses lead to several predictions that are not consistent with a number of the frequently held assumptions in the field of molecular evolution, including belief in a constant rate of evolution, symmetric branching of phylogenetic trees, the generality of higher mutation frequency for neutral sets of nucleotides, the notion that mutator mutations are generally deleterious because of their high mutation rates, and teleological explanations of DNA base composition. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

14.
Natural selection processes tune genomes in the edge of the chaos imposed by mutation and drift, allowing an enduring exploration of fitter genetic networks within the constraints imposed by self-organization and the interactions of genotype and phenotype. Alternatively, evolution can be viewed from thermodynamic, kinetic or cybernetic perspectives. Regardless of insight, there is need to understand structure-function relationships at the molecular and holistic evolutionary levels. Strategies are here described that analyze genetic variation in time and trace the evolution of nucleic acid structure. Nucleic acid scanning techniques were used to measure sequence divergence and provide a direct inference of genome-wide mutation rate. This was tested for the first time in vegetatively propagating plants. The method is general and was also used in a study of mutational patterns in phytopathogenic fungi, showing there was a link between sequence and structural diversification of ribosomal gene spacers. In order to determine if this was a general phenomenon, the origin and diversification of nucleic acid secondary structure was traced using a cladistic method capable of producing rooted phylogenetic trees. Phylogenies reconstructed from primary and secondary RNA structure were congruent at all taxonomical levels, providing evidence of a strong link between phenotype and genotype favoring thermodynamic stability and dissipation of Gibbs free energy. Overall results suggest that thermodynamic principles are important driving forces of the evolutionary processes of the living world.  相似文献   

15.
Drosophila melanogaster has been a canonical model organism to study genetics, development, behavior, physiology, evolution, and population genetics for nearly a century. Despite this emphasis and the completion of its nuclear genome sequence, the timing of major speciation events leading to the origin of this fruit fly remain elusive because of the paucity of extensive fossil records and biogeographic data. Use of molecular clocks as an alternative has been fraught with non-clock-like accumulation of nucleotide and amino-acid substitutions. Here we present a novel methodology in which genomic mutation distances are used to overcome these limitations and to make use of all available gene sequence data for constructing a fruit fly molecular time scale. Our analysis of 2977 pairwise sequence comparisons from 176 nuclear genes reveals a long-term fruit fly mutation clock ticking at a rate of 11.1 mutations per kilobase pair per Myr. Genomic mutation clock-based timings of the landmark speciation events leading to the evolution of D. melanogaster show that it shared most recent common ancestry 5.4 MYA with D. simulans, 12.6 MYA with D. erecta+D. orena, 12.8 MYA with D. yakuba+D. teisseri, 35.6 MYA with the takahashii subgroup, 41.3 MYA with the montium subgroup, 44.2 MYA with the ananassae subgroup, 54.9 MYA with the obscura group, 62.2 MYA with the willistoni group, and 62.9 MYA with the subgenus Drosophila. These and other estimates are compatible with those known from limited biogeographic and fossil records. The inferred temporal pattern of fruit fly evolution shows correspondence with the cooling patterns of paleoclimate changes and habitat fragmentation in the Cenozoic.  相似文献   

16.
17.
We develop an approximate maximum likelihood method to estimate flanking nucleotide context-dependent mutation rates and amino acid exchange-dependent selection in orthologous protein-coding sequences and use it to analyze genome-wide coding sequence alignments from mammals and yeast. Allowing context-dependent mutation provides a better fit to coding sequence data than simpler (context-independent or CpG "hotspot") models and significantly affects selection parameter estimates. Allowing asymmetric (nonreciprocal) selection on amino acid exchanges gives a better fit than simple dN/dS or symmetric selection models. Relative selection strength estimates from our models show good agreement with independent estimates derived from human disease-causing and engineered mutations. Selection strengths depend on local protein structure, showing expected biophysical trends in helical versus nonhelical regions and increased asymmetry on polar-hydrophobic exchanges with increased burial. The more stringent selection that has previously been observed for highly expressed proteins is primarily concentrated in buried regions, supporting the notion that such proteins are under stronger than average selection for stability. Our analyses indicate that a highly parameterized model of mutation and selection is computationally tractable and is a useful tool for exploring a variety of biological questions concerning protein and coding sequence evolution.  相似文献   

18.
Populations of RNA viruses are often characterized by abundant genetic variation. However, the relative fitness of these mutations is largely unknown, although this information is central to our understanding of viral emergence, immune evasion, and drug resistance. Here we develop a phylogenetic method, based on the distribution of nonsynonymous and synonymous changes, to assess the relative fitness of polymorphisms in the structural genes of 143 RNA viruses. This reveals that a substantial proportion of the amino acid variation observed in natural populations of RNA viruses comprises transient deleterious mutations that are later purged by purifying selection, potentially limiting virus adaptability. We also demonstrate, for the first time, the existence of a relationship between amino acid variability and the phylogenetic distribution of polymorphisms. From this relationship, we propose an empirical threshold for the maximum viable deleterious mutation load in RNA viruses.  相似文献   

19.
Many bacterial populations harbour substantial numbers of hypermutable bacteria, in spite of hypermutation being associated with deleterious mutations. One reason for the persistence of hypermutators is the provision of novel mutations, enabling rapid adaptation to continually changing environments, for example coevolving virulent parasites. However, hypermutation also increases the rate at which intraspecific parasites (social cheats) are generated. Interspecific and intraspecific parasitism are therefore likely to impose conflicting selection pressure on mutation rate. Here, we combine theory and experiments to investigate how simultaneous selection from inter- and intraspecific parasitism affects the evolution of bacterial mutation rates in the plant-colonizing bacterium Pseudomonas fluorescens. Both our theoretical and experimental results suggest that phage presence increases and selection for public goods cooperation (the production of iron-scavenging siderophores) decreases selection for mutator bacteria. Moreover, phages imposed a much greater growth cost than social cheating, and when both selection pressures were imposed simultaneously, selection for cooperation did not affect mutation rate evolution. Given the ubiquity of infectious phages in the natural environment and clinical infections, our results suggest that phages are likely to be more important than social interactions in determining mutation rate evolution.  相似文献   

20.
A wild-type population of Drosophila melanogaster was used to assess the impact of a known deleterious mutation, nub(1), when it had (1) evolved for up to 180 generations with the mutation or (2) recently had the same mutant allele introgressed into it. Relative to this benchmark, we observed much stronger initial fitness depression in males (-74%) than in females (-38%) and also relatively greater fitness recovery by evolved males (+55%) than females (+17%). Experimental assays revealed amelioration in both juvenile and adult fitness and suggested that the greater relative recovery of male fitness was from gains through sexual selection. These evolutionary changes in male fertility depended on pairing with their coevolved mates for both mate choice and post-copulatory components of sexual selection. Without replication at the population level, these results are used to motivate a general hypothesis rather than definitively test it: Differences in reproductive optima may generally skew mutational effects towards the more strongly sexually-selected sex due to genic capture and condition dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号