首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plotting a course: multiple signals guide pollen tubes to their targets   总被引:9,自引:0,他引:9  
Pollen plays a critical role in the life cycle of all flowering plants, generating a polarized pollen tube that delivers sperm to the eggs in the interior of the flower. Pollen tubes perceive multiple extracellular signals during their extended growth through different floral environments; these environments discriminate among pollen grains, allowing only those that are appropriately recognized to invade. The phases of pollen tube growth include interactions that establish pollen polarity, entry of pollen tubes into female cell walls, and adhesion-based pollen tube motility through a carbohydrate-rich matrix. Recent studies have identified cells within the female germ unit as important sources of pollen guidance cues. Other signals undoubtedly exist, and their discovery will require genetic screens that target diploid tissues as well as haploid male and female cells.  相似文献   

2.
Flower visits are complex encounters, in which animals are attracted by floral signals, guided toward the site of the first physical contact with a flower, land, and finally take up floral rewards. At close range, signals of stamens and pollen play an important role to facilitate flower handling in bees, yet the pollen stimuli eliciting behavioral responses are poorly known. In this study, we test the response of flower‐naive bumblebees (Bombus terrestris) toward single and multimodal pollen stimuli as compared to natural dandelion pollen. As artificial pollen stimuli, we used the yellow flavonoid pigment quercetin, the scent compound eugenol, the amino acid proline, the monosaccharide glucose, and the texture of pollen‐grain‐sized glass pellets as a tactile stimulus. Three test stimuli, dandelion pollen, one out of various uni‐ and multimodal stimulus combinations, and a solvent control were presented simultaneously to individual bumblebees, whose response was recorded. The results indicate that bumblebees respond in an irreversible sequence of behavioral reactions. Bumblebees approached the visual stimulus quercetin as often as natural dandelion pollen. An additional olfactory stimulus resulted in slightly more frequent landings. The multimodal stimulus combinations including visual, olfactory, gustatory, and tactile stimuli elicited approaches, antennal contacts, and landings as often as natural pollen. Subsequent reactions like proboscis extension, mandible biting, and buzzing were more often but not regularly observed at dandelion pollen. Our study shows that visual signals of pollen are sufficient to trigger initial responses of bumblebees, whereas multimodal pollen stimuli elicit full behavioral response as compared to natural pollen. Our results suggest a major role of pollen cues for the attraction of bees toward flowers and also explain, why many floral guides mimic the visual signals of pollen and anthers, that is, the yellow and UV‐absorbing color, to direct bumblebees toward the site where they access the floral rewards.  相似文献   

3.
ZmEA1 (Zea mays egg apparatus 1) is expressed only in the egg and synergid cells. Embryo sacs with presumed reduced expression of ZmEA1 fail to attract pollen tubes. Together with data from Arabidopsis mutants and from elegant laser ablation experiments in Torenia fournieri, these results indicate that embryo sacs send signals to the incoming pollen tubes. We need to decipher how such signals are perceived and determine if the signals are species-specific.  相似文献   

4.
植物花粉管中类整联蛋白的免疫荧光定位研究   总被引:2,自引:0,他引:2  
The Strong fluorescence signals were obtained in pollen tube of Lilium davidii Duch with labeled anti-VnR integrin serum, and anti-beta 3, alpha v integrin subunit cytoplasmic domain serum separately. The highest density of immunolabel was in the tip of pollen tube. There was little or no immunolabel in control experiment using non-immune serum, second antibody alone and anti-FnR, LnR integrin serum separately. In pollen of Prunus persica f. rubro-piena Schneid, fluoresence signals were also obtained in tube using labeled anti-beta 1, beta 3 integrin subunit cytoplasmic domain serum separately and in apertures using anti-beta 1 serum. Preliminary results show that during the germination of pollen and the growth of pollen tube, there may be integrin-like proteins in pollen tube, consisting of alpha v and beta s integria subunits in the pollen tube of Lilium davidii Duch, which is the receptor of vitronectin-like protein.  相似文献   

5.
Li HJ  Xue Y  Jia DJ  Wang T  Hi DQ  Liu J  Cui F  Xie Q  Ye D  Yang WC 《The Plant cell》2011,23(9):3288-3302
The pollen tube germinates from pollen and, during its migration, it perceives and responds to guidance cues from maternal tissue and from the female gametophyte. The putative female cues have recently been identified, but how the pollen tube responds to these signals remains to be unveiled. In a genetic screen for male determinants of the pollen tube response, we identified the pollen defective in guidance1 (pod1) mutant, in which the pollen tubes fail to target the female gametophyte. POD1 encodes a conserved protein of unknown function and is essential for positioning and orienting the cell division plane during early embryo development. Here, we demonstrate that POD1 is an endoplasmic reticulum (ER) luminal protein involved in ER protein retention. Further analysis shows that POD1 interacts with the Ca(2+) binding ER chaperone CALRETICULIN3 (CRT3), a protein in charge of folding of membrane receptors. We propose that POD1 modulates the activity of CRT3 or other ER resident factors to control the folding of proteins, such as membrane proteins in the ER. By this mechanism, POD1 may regulate the pollen tube response to signals from the female tissues during pollen tube guidance and early embryo patterning in Arabidopsis thaliana.  相似文献   

6.
Bra r 1 encodes a Ca2+-binding protein specifically expressed in anthers of Brassica rapa. In this study, we isolated a genomic clone of Bra r 1 and found sequences similar to Pollen Box core motifs and LAT56/59 box, pollen-specific cis-acting element, in the 5' upstream region of Bra r 1. Reporter gene fusion revealed that the Bra r 1 promoter directs male gametophytic expression in Nicotiana tabacum, Arabidopsis thaliana and B. napus, showing strong expression in mature pollen grains similar to that of endogenous Bra r 1. Genomic DNA of Bra r 1 was introduced into tobacco plants and the highest accumulation of Bra r 1 protein was observed in mature pollen in the same manner as reporter gene expression. Using in vitro-germinated pollen tubes of transgenic tobacco, we firstly demonstrated the subcellular localization of Bra r 1 in pollen tubes. Bra r 1 protein was distributed throughout the pollen tube of transgenic tobacco and slightly intense signals of Bra r 1 were observed in the tip region. In long-germinated pollen tubes, Bra r 1 was detected only in the cytoplasmic compartments while no signals were observed in the empty part of the pollen tube, indicating that cytoplasmic movement toward the tube tip is accompanied by Bra r 1. Hence, we suggest that Bra r 1 is involved in pollen germination and pollen tube growth.  相似文献   

7.
The sperm cell of a flowering plant cannot migrate unaided and it must be transported by the pollen-tube cell before successful fertilization can occur. The pollen tube is precisely guided to the target female gametophyte, the embryo sac, which contains the egg cell. The mechanism that precisely directs the pollen tube through the pistil to the female gametophyte has been studied for more than a century. There has been controversy over whether a diffusible signal attracts the pollen tube or whether female tissues define its path. Emerging genetic and physiological data show that the female gametophyte produces at least two directional signals, and that at least one of these signals is diffusible and derived from the two synergid cells.  相似文献   

8.
Perception and integration of signals into responses is of crucial importance to cells. Both the actin and microtubule cytoskeleton are known to play a role in mediating diverse stimulus responses. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization. SI in Papaver rhoeas triggers a Ca(2+)-dependent signaling network to trigger programmed cell death (PCD), providing a neat way to inhibit and destroy incompatible pollen. We previously established that SI stimulates F-actin depolymerization and that altering actin dynamics can push pollen tubes into PCD. Very little is known about the role of microtubules in pollen tubes. Here, we investigated whether the pollen tube microtubule cytoskeleton is a target for the SI signals. We show that SI triggers very rapid apparent depolymerization of cortical microtubules, which, unlike actin, does not reorganize later. Actin depolymerization can trigger microtubule depolymerization but not vice versa. Moreover, although disruption of microtubule dynamics alone does not trigger PCD, alleviation of SI-induced PCD by taxol implicates a role for microtubule depolymerization in mediating PCD. Together, our data provide good evidence that SI signals target the microtubule cytoskeleton and suggest that signal integration between microfilaments and microtubules is required for triggering of PCD.  相似文献   

9.
In order to accurately target the embryo sac and deliver the sperm cells, the pollen tube has to find an efficient path through the pistil and respond to precise directional cues produced by the female tissues. Although many chemical and proteic signals have been identified to guide pollen tube growth, the mechanism by which the tube changes direction in response to these signals is poorly understood. We designed an experimental setup using a microscope-mounted galvanotropic chamber that allowed us to induce the redirection of in vitro pollen tube growth through a precisely timed and calibrated external signal. Actin destabilization, reduced calcium concentration in the growth medium and inhibition of calcium channel activity decreased the responsiveness of the pollen tube to a tropic trigger. An increased calcium concentration in the medium enhanced this response and was able to rescue the effect of actin depolymerization. Time-lapse imaging revealed that the motion pattern of vesicles and the dynamics of the subapical actin array undergo spatial reorientation prior to the onset of a tropic response. Together these results suggest that the precise targeting of the delivery of new wall material represents a key component in the growth machinery that determines directional elongation in pollen tubes.  相似文献   

10.
Calcium signals are critical for the regulation of polarized growth in many eukaryotic cells, including pollen tubes and neurons. In plants, the regulatory pathways that code and decode Ca2+ signals are poorly understood. In Arabidopsis thaliana, genetic evidence presented here indicates that pollen tube tip growth involves the redundant activity of two Ca2+-dependent protein kinases (CPKs), isoforms CPK17 and -34. Both isoforms appear to target to the plasma membrane, as shown by imaging of CPK17–yellow fluorescent protein (YFP) and CPK34–YFP in growing pollen tubes. Segregation analyses from two independent sets of T-DNA insertion mutants indicate that a double disruption of CPK17 and -34 results in an approximately 350-fold reduction in pollen transmission efficiency. The near sterile phenotype of homozygous double mutants could be rescued through pollen expression of a CPK34–YFP fusion. In contrast, a transgene rescue was blocked by mutations engineered to disrupt the Ca2+-activation mechanism of CPK34 (CPK34–YFP–E465A,E500A), providing in vivo evidence linking Ca2+ activation to a biological function of a CPK. While double mutant pollen tubes displayed normal morphology, relative growth rates for the most rapidly growing tubes were reduced by more than three-fold compared with wild type. In addition, while most mutant tubes appeared to grow far enough to reach ovules, the vast majority (>90%) still failed to locate and fertilize ovules. Together, these results provide genetic evidence that CPKs are essential to pollen fitness, and support a mechanistic model in which CPK17 and -34 transduce Ca2+ signals to increase the rate of pollen tube tip growth and facilitate a response to tropism cues.  相似文献   

11.
Signaling in pollination   总被引:4,自引:0,他引:4  
The past year has seen considerable advances in our understanding of signaling in pollen tubes. Evidence suggesting that lipids are involved in pollen tube guidance has opened up new avenues. Major advances have been made in understanding the roles of Rho-like GTPases and protein kinases in regulating pollen tube growth. Light is being shed on how signals may be integrated. It is becoming clear that the role of Ca(2+) in pollen tube growth is perhaps more complex than originally anticipated.  相似文献   

12.
从广义上讲,被子植物的受精过程是指花粉粒落到柱头上萌发形成花粉管,花粉管穿过柱头沿着引导组织生长进入子房内,最终在胚囊中实现精细胞与卵细胞以及中央细胞分别融合从而起始胚胎和胚乳的发育.被子植物的精细胞由于不具有鞭毛而无法自由移动,因此在受精过程中需要借助于花粉管来将精细胞运送到胚囊中.花粉管通过与雌性的孢子体组织之间的相互作用和识别将精细胞准确地运送到胚珠附近,而最终将精细胞准确地运送到胚囊内的过程则是受到了雌配子体细胞的控制.可以说,受精的成功实现有赖于雌性和雄性细胞之间的持续的识别和相互作用,这种互作具有多样性和阶段特异性.本文将主要综述被子植物受精过程中花粉粒以及花粉管与多种雌性孢子体组织以及雌配子体之间的信号互作研究.  相似文献   

13.
The ecology and evolution of visual pollen signals   总被引:9,自引:0,他引:9  
By offering pollen and/or nectar as a food resource, angiosperms exploit flower visitors for pollen transport. Pollen thus acts not only as a means for transportation of male gametes, but also as a food reward for potential pollinators. Many findings provide compelling evidence that pollen acts, in addition, as a visual signal. The present contribution reviews several strategies that angiosperms have evolved to attract potential pollinators to the site of reward. We here consider evolutionary, ecological, sensory-physiological, and behavioural aspects of flower-pollinator interactions that are correlated with visual signals provided by pollen and pollen-producing organs, or imitations thereof.  相似文献   

14.
G. Gay  C. Kerhoas  C. Dumas 《Planta》1987,171(1):82-87
The quality of Cucurbita pepo L. pollen was studied using field pollinations and the fluorochromatic-reaction test. The extreme sensitivity of this pollen to dehydration and ageing is demonstrated. Controlled stress applied to mature pollen leads to the development of seedless fruits. Molecular signals seem to be involved in the induction of this parthenocarpy. These results indicate the existence of distinct sequences involved in the completion of the fertilization program of pollen. With pollen altered by stress, the fertilization process may be stopped at different stages of its completion. We bring evidence that Cucurbita pepo plants have developed special adaptations in order to compensate for the poor viability of their pollen.Abbreviation FCR fluorochromatic reaction  相似文献   

15.
Summary The levels of calcium in pollen grains on the stigma, after self vs. cross pollinations, were compared inBrassica oleracea, a species showing sporophytic self-incompatibility. Self pollen was characterized by higher levels of chlorotetracycline fluorescence and by higher calcium signals in energy-dispersive analysis of X-rays than cross pollen. Cellular integrity of pollen grains was maintained after rejection, and self pollen could be rescued from the stigma to germinate 4 h after pollination, suggesting that the rejection response was not irreversible.abbreviations CTC chlorotetracycline - EDAX energy dispersive analysis of x-rays - FDA fluorescein diacetate - RH relative humidity - SSI sporophytic self-incompatibility - SLSG S locus-specific glycoproteins  相似文献   

16.
The integration of signals received by a cell, and their transduction to targets, is essential for all cellular responses. The cytoskeleton has been identified as a major target of signalling cascades in both animal and plant cells. Self-incompatibility (SI) in Papaver rhoeas involves an allele-specific recognition between stigmatic S-proteins and pollen, resulting in the inhibition of incompatible pollen. This highly specific response triggers a Ca(2+)-dependent signalling cascade in incompatible pollen when a stigmatic S-protein interacts with it. It has been demonstrated recently that SI induces dramatic alterations in the organization of the pollen actin cytoskeleton. This implicates the actin cytoskeleton as a key target for the SI-stimulated signals. The cytological alterations to the actin cytoskeleton that are triggered in response to SI are described here and there seem to be several stages that are distinguishable temporally. Evidence was obtained that F-actin depolymerization is also stimulated. The current understanding that the actin cytoskeleton is a target for the signals triggered by the SI response is discussed. It is suggested that these F-actin alterations may be Ca(2+)-mediated and that this could be a mechanism whereby SI-induced tip growth inhibition is achieved. The potential for actin-binding proteins to act as key mediators of this response is discussed and the mechanisms that may be responsible for effecting these changes are described. In particular, the parallels between sustained actin rearrangements during SI and in apoptosis of animal cells are considered.  相似文献   

17.
Gametophytic pollen tube guidance   总被引:1,自引:0,他引:1  
The concept of a pollen tube attractant was proposed in the late nineteenth century when pollen tubes were found to grow toward excised pistil tissues on medium. Since then, for about 140 years, plant biologists have tried to identify the pollen tube attractants. However, no molecule has been convincingly demonstrated to be the true attractant that actually controls the navigation of pollen tubes in the pistil. The past decade has seen substantial progress in this field in terms of our understanding of the various mechanisms of pollen tube guidance. It was suggested that diffusible pollen tube attractants might provide localized signals that affect the directional growth of the pollen tube, especially in the last phase of guidance by the target female gametophyte. Here, we review the mechanisms of pollen tube guidance, with special focus on the gametophytic guidance and the attractant. The necessary and appropriate conditions required by the true attractant will be discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato (Solanum lycopersicum), LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here we show that reduced expression of LePRK2 affects four aspects of pollen germination and tube growth. First, the percentage of pollen that germinates is reduced, and the time window for competence to germinate is also shorter. Second, the pollen tube growth rate is reduced both in vitro and in the pistil. Third, tip-localized superoxide production by pollen tubes cannot be increased by exogenous calcium ions. Fourth, pollen tubes have defects in responses to style extract component (STIL), an extracellular growth-promoting signal from the pistil. Pollen tubes transiently overexpressing LePRK2-fluorescent protein fusions had slightly wider tips, whereas pollen tubes coexpressing LePRK2 and its cytoplasmic partner protein KPP (a Rop-GEF) had much wider tips. Together these results show that LePRK2 positively regulates pollen germination and tube growth and is involved in transducing responses to extracellular growth-promoting signals.  相似文献   

19.
Signal perception and the integration of signals into networks that effect cellular changes is essential for all cells. The self-incompatibility (SI) response in field poppy pollen triggers a Ca(2+)-dependent signaling cascade that results in the inhibition of incompatible pollen. SI also stimulates dramatic alterations in the actin cytoskeleton. By measuring the amount of filamentous (F-) actin in pollen before and during the SI response, we demonstrate that SI stimulates a rapid and large reduction in F-actin level that is sustained for at least 1 h. This represents quantitative evidence for stimulus-mediated depolymerization of F-actin in plant cells by a defined biological stimulus. Surprisingly, there are remarkably few examples of sustained reductions in F-actin levels stimulated by a biologically relevant ligand. Actin depolymerization also was achieved in pollen by treatments that increase cytosolic free Ca(2+) artificially, providing evidence that actin is a target for the Ca(2+) signals triggered by the SI response. By determining the cellular concentrations and binding constants for native profilin from poppy pollen, we show that profilin has Ca(2+)-dependent monomeric actin-sequestering activity. Although profilin is likely to contribute to stimulus-mediated actin depolymerization, our data suggest a role for additional actin binding proteins. We propose that Ca(2+)-mediated depolymerization of F-actin may be a mechanism whereby SI-induced tip growth inhibition is achieved.  相似文献   

20.
蛋白酶体途径对花粉发育调控具有重要作用, 但花粉发育过程中蛋白酶体的分布及其活性的动态变化一直未见报道。蛋白酶体荧光底物结合荧光分光光度计分析表明, 蛋白酶体的活性从单核小孢子到具有2个原叶细胞的三细胞花粉逐渐增强, 而在成熟花粉中略有下降。免疫荧光标记结合共聚焦显微镜分析表明, 蛋白酶体不均匀地分布于细胞质和细胞核中, 并在花粉细胞不均等分裂过程中聚集分布于先后产生的2个原叶细胞内。总之, 蛋白酶体的活性及其分布在花粉发育过程中存在相关的时空动态变化, 表明裸子植物花粉中的蛋白酶体活性及其分布与花粉发育具有相关性, 并在原叶细胞的退化过程中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号