首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHEK2 (previously known as "CHK2") is a cell-cycle-checkpoint kinase that phosphorylates p53 and BRCA1 in response to DNA damage. A protein-truncating mutation, 1100delC in exon 10, which abolishes the kinase function of CHEK2, has been found in families with Li-Fraumeni syndrome (LFS) and in those with a cancer phenotype that is suggestive of LFS, including breast cancer. In the present study, we found that the frequency of 1100delC was 2.0% among an unselected population-based cohort of 1,035 patients with breast cancer. This was slightly, but not significantly (P=.182), higher than the 1.4% frequency found among 1,885 population control subjects. However, a significantly elevated frequency was found among those 358 patients with a positive family history (11/358 [3.1%]; odds ratio [OR] 2.27; 95% confidence interval [CI] 1.11-4.63; P=.021, compared with population controls). Furthermore, patients with bilateral breast cancer were sixfold more likely to be 1100delC carriers than were patients with unilateral cancer (95% CI 1.87-20.32; P=.007). Analysis of the 1100delC variant in an independent set of 507 patients with familial breast cancer with no BRCA1 and BRCA2 mutations confirmed a significantly elevated frequency of 1100delC (28/507 [5.5%]; OR 4.2; 95% CI 2.4-7.2; P=.0002), compared with controls, with a high frequency also seen in patients with only a single affected first-degree relative (18/291 [6.2%]). Finally, tissue microarray analysis indicated that breast tumors from patients with 1100delC mutations show reduced CHEK2 immunostaining. The results suggest that CHEK2 acts as a low-penetrance tumor-suppressor gene in breast cancer and that it makes a significant contribution to familial clustering of breast cancer-including families with only two affected relatives, which are more common than families that include larger numbers of affected women.  相似文献   

2.
Previous studies of families with multiple cases of breast cancer have indicated that a frameshift alteration in the CHEK2 gene, 1100delC, is associated with an elevated frequency of breast cancer in such families, but the risk associated with the variant in other situations is uncertain. To evaluate the breast cancer risk associated with this variant, 10,860 breast cancer cases and 9,065 controls from 10 case-control studies in five countries were genotyped. CHEK2*1100delC was found in 201 cases (1.9%) and 64 controls (0.7%) (estimated odds ratio 2.34; 95% CI 1.72–3.20; P=.0000001). There was some evidence of a higher prevalence of CHEK2*1100delC among cases with a first-degree relative affected with breast cancer (odds ratio 1.44; 95% CI 0.93–2.23; P=.10) and of a trend for a higher breast cancer odds ratio at younger ages at diagnosis (P=.002). These results confirm that CHEK2*1100delC confers an increased risk of breast cancer and that this risk is apparent in women unselected for family history. The results are consistent with the hypothesis that CHEK2*1100delC multiplies the risks associated with susceptibility alleles in other genes to increase the risk of breast cancer.  相似文献   

3.
CHEK2 encodes a serine/threonine-protein kinase which plays a critical role in DNA damage signaling pathways. CHEK2 directly phosphorylates and regulates the functions of p53 and BRCA1. Most women with breast and/or ovarian cancer are not carriers of mutant BRCA1 or BRCA2. Multiple studies have shown that a CHEK2*1100delC confers about a two-fold increased risk of breast cancer in unselected females and a tenfold increase in males. Moreover, studies have shown that first-degree relatives of bilateral breast cancer cases who carried the CHEK2*1100delC allele had an eight-fold increased risk of breast cancer. It has been suggested that CHEK2 functions as a low-penetrance susceptibility gene for cancers and multiplies the risks associated with other gene(s) to increase cancer risk. The main goal of this study was to evaluate and to compare the role of truncating mutations, splice junction mutations and rare missense substitutions in breast cancer susceptibility gene CHEK2. Present study was performed on 140 individuals including 70 breast cancer patients both with and without family history and 70 normal individuals. Written consent was obtained and 3 ml intravenous blood was drawn from all the subjects. DNA was extracted from all the samples through inorganic method published already. Primers were synthesized for all the 14 exons of CHEK2 gene. Coding and adjacent intronic sequences of CHEK2 gene were amplified and sequenced. Two genetic variants (p.H371Y, p.D438Y) were found in exon 10 and exon 11 of gene CHEK2 which were not found in any of the 70 control individuals from same geographical area and ethnic group. The genetic variant c.1312G>T (p.D438Y) identified in a patient with a family history of breast cancer. To our knowledge, this is first mutation scanning study of gene CHEK2 from Balochistan population.  相似文献   

4.
Allelic variants of CHEK2 contribute to an elevated risk for human breast cancer and possibly other cancer types. In particular, the CHEK2*1100delC polymorphic variant has been identified as a low-penetrance breast cancer susceptibility allele in breast cancer families with wild type BRCA1 and BRCA2. To better understand the molecular basis by which this allele increases risk for disease, we have generated a mouse in which the wild type CHEK2 (Chk2 in mouse) allele has been replaced with the 1100delC variant. Mouse embryo fibroblasts (MEFs) derived from these mice have an altered cell cycle profile in which a far greater proportion of cells are in S-phase and in G2 (4N) compared with wild type cells. The mutant cells show signs of spontaneous genomic instability as indicated by polyploidy and an increase in DNA double strand breaks.  相似文献   

5.
The identification of BRCA1/2 and CHEK2 germline mutations is central to the molecular diagnostics of susceptibility to breast or/and ovarian cancer. A microarray-based rapid genotyping technique has been developed for identifying BRCA1 (185delAG, 300T>G, 4153delA, 5382insC, and 4158 A>G, 5382insC), BRCA2 (695insT and 6174delT), and CHEK2 (1100delC) mutations. It was applied for 412 randomly collected breast-cancer specimens from central Russia. In 25 (6.0%) patients, breast cancer was associated with other tumors of, e.g., ovarian, cervical, or colorectal cancer. BRCA1/2 and CHEK2 mutations were detected in 33 breast-cancer patients (8.0%). The most frequent mutations were BRCA1 5382insC, which was found in 16 patients (3.9%), and CHEK2 1100delC, which was detected in seven patients (1.7%). The suggested diagnostic microarray proved to be an efficient means of identifying BRCA1/2 and CHEK2 founder mutations most frequent in central Russia and can be proposed as a high-throughput diagnostic tool for clinical genetic testing.  相似文献   

6.
We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants reported elsewhere, R145W and I157T with breast cancer, we screened 737 BRCA1/2-negative familial breast cancer cases from 605 families, 459 BRCA1/2-positive cases from 335 families, and 723 controls from the United Kingdom, the Netherlands, and North America. All three variants were rare in all groups, and none occurred at significantly elevated frequency in familial breast cancer cases compared with controls. These results indicate that 1100delC may be the only CHEK2 allele that makes an appreciable contribution to breast cancer susceptibility.  相似文献   

7.
Frequencies of the 538insC mutation in the BRCA1 gene and the 1100delC mutation in the CHEK2 gene were compared in the group of breast cancer patients and the large-scale sample, consisting of 7920 DNA specimens from healthy residents of the city of Novosibirsk. Higher frequencies of these mutations in the patient group compared to the control sample (1.95 versus 0.25% for BRCA1 5382insC, and 1.78 versus 0.40% for CHEK2 1100delC) were observed, pointing to their association with susceptibility to breast cancer (OR = = 7.86, 95% CI 3.51-17.30 and OR =4.46, 95% C1 2.04-9.49, respectively).  相似文献   

8.
A number of studies demonstrated that mutations in the CHEK2 gene can increase the risk of oncologic diseases, including breast cancer and that the mutational distribution s depends on the genetic structure of populations. In our study we compared the prevalence of c.1100delC, c.444+1G>A, del5395, p.I157T, and p.R145W CHEK2 mutations in 977 breast cancer patients (Russians, Tatars, Bashkirs, Ukrainians, and individual representatives of other ethnic groups) and in women without any oncologic pathology (n = 1069) from the Republic of Bashkortostan. We found CHEK2 del5395 mutation with a frequency of 1.23% (12/977) in breast-cancer patients, whereas in the control group it frequency was 0.09% (1/1069) (OR: 13.28, CI 95%: 1.72–102.33, p = 0.003). Frequencies of c.1100delC and c.444+1G>A mutations in patients and controls were 0.4%, 0.4% (4/977) and 0.09% (1/1069), 0.2% (2/1069), respectively. The p.I157T substitution in CHEK2 gene was the most widespread variant in two studied cohorts (approximately 5%); however, differences in the frequencies between cases and controls did not reach statistical significance. Truncating mutations were mainly found in women of Slavic origin. All three mutations were found in Russians and Ukrainians. CHEK2 mutations c.1100delC and c.444+1G>A were not found in Bashkirs and Tatars; however, the CHEK2 del5395 deletion was present in Tatars.  相似文献   

9.
Ovarian cancer (OC) is one of the leading cause of cancer death in women. Inherited BRCA1 and BRCA2 mutations strikingly increase OC risk (with lifetime risk estimates ranging at 10-60%). Mutation 1100delC in CHEK2 gene was shown to be associated with breast cancer in women carrying this mutation. Knowledge of the nature and frequency of population-specific mutations in these genes is a critical step in the development of simple and inexpensive diagnostic approaches to DNA analysis. The frequencies of 185delAG, 300T>G, 4153delA, 4158A>G, 5382insC mutations in BRCA1 gene, 695insT and 6174delT mutations in BRCA2 gene and 1100delC mutation in CHEK2 gene were analyzed using biochips in Russian OC patients. We studied 68 women who received a diagnosis of epithelial OC and 19 women with primary multiple tumors involving the ovaries. The 185delAG, 300T>G, 4153delA and 5382insC in BRCA1 gene were identified. The most prevailing mutation was 5382insC in BRCA1 gene (87.5% of all BRCA1 mutations OC patients, 50.0% in patients with primary multiple tumors involving the ovaries). No mutations in BRCA2 and CHEK2 genes were detected.  相似文献   

10.
BackgroundThe cell cycle checkpoint kinase 2 (CHEK2) protein participates in the DNA damage response in many cell types. Germline mutations in CHEK2 (1100delC, IVS2+1G>A and I157T) have been impaired serine/threonine kinase activity and associated with a range of cancer types. This hospital-based case–control study aimed to investigate whether CHEK2 1100delC, IVS2+1G>A and I157T mutations play an important role in the development of colorectal cancer (CRC) in Turkish population.MethodsA total of 210 CRC cases and 446 cancer-free controls were genotyped for CHEK2 mutations by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele specific-polymerase chain reaction (AS-PCR) methods.ResultsWe did not find the CHEK2 1100delC, IVS2+1G>A and I157T mutations in any of the Turkish subjects.ConclusionOur result demonstrate for the first time that CHEK2 1100delC, IVS2+1G>A and I157T mutations have not been agenetic susceptibility factor for CRC in the Turkish population. Overall, our data suggest that genotyping of CHEK2 mutations in clinical settings in the Turkish population should not be recommended. However, independent studies are need to validate our findings in a larger series, as well as in patients of different ethnic origins.  相似文献   

11.
CHEK2 gen encodes cell cycle checkpoint kinase 2 that participates in the DNA repair pathway, cell cycle regulation and apoptosis. Mutations in CHEK2 gene may result in kinase inactivation or reduce both catalytic activity and capability of binding other proteins. Some studies indicate that alterations in CHEK2 gene confers increase the risk of breast cancer and some other malignancies, while the results of other studies are inconclusive. Thus the significance of CHEK2 mutations in aetiology of breast cancer is still debatable. The aim of our study was to evaluate the relationship between the breast/ovarian cancer and CHEK2 variants by: i) the analysis of the frequency of selected CHEK2 variants in breast and ovarian cancer patients compared to the controls; ii) evaluation of relationships between the certain CHEK2 variants and clinico-histopathological and pedigree data. The study was performed on 284 breast cancer patients, 113 ovarian cancer patients and 287 healthy women. We revealed the presence of 430T > C, del5395 and IVS2 + 1G > A variants but not 1100delC in individuals from both study and control groups. We did not observe significant differences between cancer patients and controls neither in regard to the frequency nor to the type of CHEK2 variants. We discussed the potential application of CHEK2 variants in the evaluation of breast and ovarian cancer predisposition.  相似文献   

12.
Checkpoint kinase 2 gene (CHEK2) alterations increase risk of several cancer types. We analyzed selected CHEK2 alterations in 270 Czech pancreatic cancer patients and in 683 healthy controls. The pancreatic cancer risk was higher in individuals who inherited rare alterations in CHEK2 region involving forkhead-associated domain other than I157T (OR = 5.14; 95% CI = 0.94–28.23) but the observed association was non-significant (p = 0.057). The most frequent I157T mutation did not alter the pancreatic cancer risk and neither the followed deletion of 5395 bp nor c.1100delC were found in any of pancreatic cases. We conclude that the I157T, other alterations in its proximity, del5395 and c.1100delC in CHEK2 do not predispose to pancreatic cancer risk in the Czech population.  相似文献   

13.
Ovarian cancer (OC) is among the leading causes of cancer-related mortality in women. A high risk of OC (lifetime estimates ranging 10–60%) is determined by BRCA1/2 mutations. The 1100delC variant of CHEK2 is associated with predisposition to breast cancer (BC) in women. With the known spectrum and frequencies of mutations of these genes, it is possible to identify a risk group in a population. Using biochip technology, the frequencies of eight BRCA1/2 and CHEK2 mutations (185delAG, 300T>G, 4153delA, 4158A>G, and 5382insC of BRCA1; 695insT and 6174delT of BRCA2; and 1100delC of CHEK2) were studied in Russian women with OC, including 68 patients with organ-specific OC and 19 with primary multiple tumors (PMTs) involving the ovaries. Four BRCA1 mutations were observed: 185delAG, 300T>G, 4153delA, and 5382insC. The last one was most common in OC, accounting for 87.5% of all cases with mutant BRCA1, and occurred at a frequency of 50.0% in PMT. BRCA2 and CHEK2 mutations were not found in the two groups.  相似文献   

14.
The results of screening for BRCA1, BRCA2, ATM, NBN, CHEK2, PALB2, BLM gene mutations in 1000 breast cancer (BC) patients from the Republic of Bashkortostan (RB) are presented. Germline mutations in these genes accounted for 7.5% of breast cancer patients. The wide spectrum of mutations was found in women of Slavic origin, including: c.5266dupC, c.181T>G, and c.4034delA in BRCA1; c.5932G>T in ATM; c.657_661del5 in NBN; c.444+1G>A, c.1100delC, and dele9,10(5kb) in CHEK2; c.509_510delGA and c.172_175delTTGT in PALB2; and c.1642C>T in BLM gene.  相似文献   

15.
《PloS one》2013,8(2)
The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.  相似文献   

16.
Germline mutations in the BRCA1 or BRCA2 genes predispose their carriers to breast or/and ovary cancers during their lifetime. The most frequent mutations: 5382insC, 185delAG, C61G and 4153delA in BRCA1, and 6174delT and 9631delC in BRCA2 were studied in a group of 148 probands admitted for genetic counseling, using allele-specific amplification (ASA) PCR test. Fifteen carriers of three different mutations: 5382insC, 185delAG and C61G in BRCA1 were found. Two families carried the 185delAG mutation and additional two C61G in BRCA1. Nobody carried the mutation 4153delA in BRCA1 nor 6174delT or 9631delC in BRCA2. Most of the carriers of a germline mutation were observed among the patients who developed bilateral breast cancer (17%). The lowest frequency of the germline mutations was found in the healthy persons who had two or more relatives affected with breast or ovarian cancer.  相似文献   

17.
A total of 18 families with multiple cases of breast cancer were identified from southern Taiwan, and 5 of these families were found to carry cancer-associated germline mutations in the BRCA1 and BRCA2 genes. One novel cryptic splicing mutation of the BRCA1 gene, found in two unrelated families, was shown to be a deletion of 10 bp near the branch site in intron 7. This mutation causes an insertion of 59 nucleotides derived from intron 7 and results in a frameshift, leading to premature translational termination of BRCA1 mRNA in exon 8. Deletions of 2670delC, 3073delT and 6696-7delTC in the BRCA2 gene were found in three other breast cancer families. All three deletions are predicted to generate frameshifts and to result in the premature termination of BRCA2 protein translation. Several genetic polymorphisms in both BRCA1 and BRCA2 genes were also detected in this investigation. Received: 28 September 1998 / Accepted: 20 November 1998  相似文献   

18.
19.
CHEK2 is a protein kinase that is involved in cell-cycle checkpoint control after DNA damage. Germline mutations in CHEK2 gene have been associated with increase in breast cancer risk. The aim of this study is to identify the CHEK2 gene germline mutations among high-risk breast cancer patients and its contribution to the multiethnic population in Malaysia. We screened the entire coding region of CHEK2 gene on 59 high-risk breast cancer patients who tested negative for BRCA1/2 germline mutations from UKM Medical Centre (UKMMC), Hospital Kuala Lumpur (HKL) and Hospital Putrajaya (HPJ). Sequence variants identified were screened further in case-control cohorts consisting of 878 unselected invasive breast cancer patients (180 Malays, 526 Chinese and 172 Indian) and 270 healthy individuals (90 Malays, 90 Chinese and 90 Indian). By screening the entire coding region of the CHEK2 gene, two missense mutations, c.480A>G (p.I160M) and c.538C>T (p.R180C) were identified in two unrelated patients (3.4%). Further screening of these missense mutations on the case-control cohorts unveiled the variant p.I160M in 2/172 (1.1%) Indian cases and 1/90 (1.1%) Indian control, variant p.R180C in 2/526 (0.38%) Chinese cases and 0/90 Chinese control, and in 2/180 (1.1%) of Malay cases and 1/90 (1.1%) of Malay control. The results of this study suggest that CHEK2 mutations are rare among high-risk breast cancer patients and may play a minor contributing role in breast carcinogenesis among Malaysian population.  相似文献   

20.
A single founder allele of the CHEK2 gene has been associated with predisposition to breast and prostate cancer in North America and Europe. The CHEK2 protein participates in the DNA damage response in many cell types and is therefore a good candidate for a multisite cancer susceptibility gene. Three founder alleles are present in Poland. Two of these result in a truncated CHEK2 protein, and the other is a missense substitution of an isoleucine for a threonine. We ascertained the prevalence of each of these alleles in 4,008 cancer cases and 4,000 controls, all from Poland. The majority of the common cancer sites were represented. Positive associations with protein-truncating alleles were seen for cancers of the thyroid (odds ratio [OR] 4.9; P=.0006), breast (OR 2.2; P=.02), and prostate (OR 2.2; P=.04). The missense variant I157T was associated with an increased risk of breast cancer (OR 1.4; P=.02), colon cancer (OR 2.0; P=.001), kidney cancer (OR 2.1; P=.0006), prostate cancer (OR 1.7; P=.002), and thyroid cancer (OR 1.9; P=.04). The range of cancers associated with mutations of the CHEK2 gene may be much greater than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号