首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To determine the biodiversity of rhizobial strains nodulating Cicer arietinum L. in representative soils from various areas of Morocco. METHODS AND RESULTS: Symbiotic traits, utilization of 49 carbohydrate sources, resistance to antibiotics and heavy metals, tolerance to salinity, to extreme temperatures and pH were studied as phenotypic markers. In addition, restriction fragment length polymorphism (RFLP) of PCR-amplified 16S rDNAs were compared with those of reference strains. Numerical analysis of the phenotypic characteristics showed that the 48 strains studied fell into three distinct groups. RFLP analysis of 16S rRNA genes revealed an additional heterogeneity and four ribotypes were identified. CONCLUSIONS: Chickpea rhizobia isolated from Moroccan soils are both phenotypically and genetically diverse. Most of these rhizobia belong to the Mesorhizobium genus. However, some strains originating from a particular soil appeared to have 16S rRNA genes similar to Sinorhizobium as well as very distinct auxanographic characteristics compared with Mesorhizo- bium isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: A well characterized collection of chickpea-nodulating rhizobia in representative soils of Morocco has been generated, which can be used to develop efficient inoculants for this crop. This is the first report evidencing that chickpeas may be nodulated by bacteria from the Sinorhizobium genus.  相似文献   

2.
AIMS: To identify several strains of Mesorhizobium amorphae and Mesorhizobium tianshanense nodulating Cicer arietinum in Spain and Portugal, and to study the symbiotic genes carried by these strains. METHODS AND RESULTS: The sequences of 16S-23S intergenic spacer (ITS), 16S rRNA gene and symbiotic genes nodC and nifH were analysed. According to their 16S rRNA gene and ITS sequences, the strains from this study were identified as M. amorphae and M. tianshanense. The type strains of these species were isolated in China from Glycyrrhiza pallidiflora and Amorpha fruticosa nodules, respectively, and are not capable of nodulating chickpea. These strains carry symbiotic genes, phylogenetically divergent from those of the chickpea isolates, whose nodC and nifH genes showed more than 99% similarity with respect to those from Mesorhizobium ciceri and Mesorhizobium mediterraneum, the two common chickpea nodulating species in Spain and Portugal. CONCLUSIONS: The results from this study showed that different symbiotic genes have been acquired by strains from the same species during their coevolution with different legumes in distinct geographical locations. SIGNIFICANCE AND IMPACT OF THE STUDY: A new infrasubspecific division named biovar ciceri is proposed within M. amorphae and M. tianshanense to include the strains able to effectively nodulate Cicer arietinum.  相似文献   

3.
A total of 111 rhizobial strains were isolated from wild legumes in Xinjiang, an isolated region of northwest China. Nine genomic species belonging to four genera of Rhizobium, Mesorhizobium, Ensifer, and Bradyrhizobium were defined among these strains based on the characterization of amplified 16S ribosomal DNA restriction analysis (ARDRA), restriction fragment length polymorphism (RFLP) analysis of 16S-23S rDNA intergenic spacers (IGS), 16S rRNA gene sequencing and multilocus sequence analysis (MLSA). Twenty-five nodC types corresponding to eight phylogenetic clades were divided by RFLP and sequence analysis of the PCR-amplified nodC gene. The acid-producing Rhizobium and Mesorhizobium species were predominant, which may be related to both the local environments and the hosts sampled. The present study also showed the limitation of using nod genes to estimate the host specificity of rhizobia.  相似文献   

4.
采用16S rDNA-RFLP及序列分析方法,对分离自黄华属的披针叶黄华、喀什黄华和光叶黄华根瘤菌进行分析研究.结果表明,分离得到的33株根瘤菌在种水平上具有丰富的遗传多样性,它们分别归属于中慢生根瘤菌属(Mesorhizobium)、中华根瘤菌属(Sinorhizobium)、根瘤菌属(Rhizobium)和土壤杆菌属(Agrobacterium).其中,以CCNWGS0011和CCNWGS0010-1为代表的5株根瘤菌构成独立的分支,可能为潜在的新种.  相似文献   

5.
In a combined approach of phenotypic and genotypic characterization, 28 indigenous rhizobial isolates obtained from different chickpea growing regions in peninsular and northern India were analyzed for diversity. The field isolates were compared to two reference strains TAL620 and UPM-Ca142 representing M. ciceri and M. mediterraneum respectively. Phenotypic markers such as resistance to antibiotics, tolerance to salinity, temperature, pH, phosphate solubilization ability, growth rate and also symbiotic efficiency showed considerable diversity among rhizobial isolates. Their phenotypic patterns showed adaptations of rhizobial isolates to abiotic stresses such as heat and salinity. Two salt tolerant strains (1.5% NaCl by T1 and T4) with relatively high symbiotic efficiency and two P-solubilising strains (66.7 and 71 microg/ml by T2 and T5) were identified as potential bioinoculants. Molecular profiling by 16S ribosomal DNA Restriction Fragment Length Polymorphism (RFLP) revealed three clusters at 67% similarity level. Further, the isolates were differentiated at intraspecific level by 16S rRNA gene phylogeny. Results assigned all the chickpea rhizobial field isolates to belong to three different species of Mesorhizobium genus. 46% of the isolates grouped with Mesorhizobium loti and the rest were identified as M. ciceri and M. mediterraneum, the two species which have been formerly described as specific chickpea symbionts. This is the first report on characterization of chickpea nodulating rhizobia covering soils of both northern and peninsular India. The collection of isolates, diverse in terms of species and symbiotic effectiveness holds a vast pool of genetic material which can be effectively used to yield superior inoculant strains.  相似文献   

6.
斜茎黄芪根瘤菌结瘤基因nodA PCR扩增及PCR-RFLP分析   总被引:7,自引:0,他引:7  
对采自我国北方地区的16株斜茎黄芪根瘤菌代表菌株的共同结瘤基因nodA进行了PCR扩增及PCR-RFLP分析研究。来自Mesorhizobium和Rhizobium系统发育分支的代表菌株都得到了nodA PCR扩增产物;而来自Agrobacterium系统发育分支的代表菌株都没有得到nodA PCR扩增产物。进一步的nodAPCR-RFLP分析结果表明斜茎黄芪根瘤菌具有很大的nodA基因遗传多样性,具有4种不同的16S rDNAPCR-RFLP遗传图谱类型的12株斜茎黄芪根瘤菌具有8种不同的nodA PCR-RFLP遗传图谱类型。但是斜茎黄芪根瘤菌nodA基因遗传多样性随种群而变化,来自M.septentrionale的具有相同的16S rDNA PCR-RFLP遗传图谱类型的4个代表菌株具有4种不同的nodA PCR-RFLP遗传图谱类型;而来自M.tempera-tum的具有相同的16S rDNA PCR-RFLP遗传图谱类型3个代表菌株则具有相同的nodA PCR-RFLP遗传图谱类型。此外,来自不同种的具有不同16S rDNA PCR-RFLP遗传图谱类型的菌株却具有相同的nodA PCR-RFLP遗传图谱类型,说明nodA基因可能在根瘤菌的不同种间发生了水平转移。  相似文献   

7.
The genetic diversity of 88 Caragana nodule rhizobial isolates, collected from arid and semi-arid alkaline sandy soils in the north of China, was assessed by PCR-RFLP of the 16S rRNA gene and the 16S-23S IGS, as well as the phylogenies of housekeeping genes (atpD, glnII and recA) and symbiotic genes (nodC and nifH). Of the 88 strains, 69 were placed in the genus Mesorhizobium, 16 in Rhizobium and 3 in Bradyrhizobium. Mesorhizobium amorphae, Mesorhizobium septentrionale, Mesorhizobium temperatum and Rhizobium yanglingense were the four predominant microsymbionts associated with Caragana spp. in the surveyed regions, and M. septentrionale was widely distributed among the sampling sites. Phylogenies of nodC and nifH genes showed that two kinds of symbiotic genes existed, corresponding to Mesorhizobium and Rhizobium, respectively. Available phosphorous (P) and potassium (K) contents were the main soil factors correlated with the distribution of these rhizobia in the sampling regions. Positive correlations between the available higher P content/lower K content and the dominance of Mesorhizobium species (M. temperatum, M. amorphae and M. septentrionale), and between the lower P content/higher K content and the dominance of R. yanglingense were found.  相似文献   

8.
In this study, the nitrogen fixing Astragalus glycyphyllos symbionts were characterized by phenotypic properties, restriction fragment length polymorphism (RFLP), and sequences of 16S rDNA. The generation time of A. glycyphyllos rhizobia in yeast extract mannitol medium was in the range 4–6 h. The studied isolates exhibited a low resistance to antibiotics, a moderate tolerance to NaCl, assimilated di- and trisaccharides, and produced acid in medium containing mannitol as a sole carbon source. In the cluster analysis, based on 86 phenotypic properties of A. glycyphyllos symbionts and the reference rhizobia, examined isolates and the genus Mesorhizobium strains were placed on a single branch, clearly distinct from other lineages of rhizobial genera. By the comparative analysis of 16S rRNA gene sequences and 16S rDNA–RFLP, A. glycyphyllos nodulators were also identified as the members of the genus Mesorhizobium. On the 16S rDNA sequence phylogram, the representatives of A. glycyphyllos nodule isolates formed a robust, monophyletic cluster together with the Mesorhizobium species at 16S rDNA sequence similarity of these bacteria between 95 and 99 %. Similarly, the cluster analysis of the combined RFLP–16S rDNA patterns, obtained with seven restriction endonucleases, showed that A. glycyphyllos rhizobia are closely related to the genus Mesorhizobium bacteria. The taxonomic approaches used in this paper allowed us to classify the studied bacteria into the genus Mesorhizobium.  相似文献   

9.
甘草根瘤菌的16S rDNA全序列测定及系统进化分析   总被引:14,自引:4,他引:10  
通过对西北干旱半干旱地区68株甘草根瘤菌的表型多样性和抗逆性分离研究,发现1个新类群和1个具有较高抗逆性的菌株。对其中心菌株CCNWGX022和高抗性菌株CCNWGX035进行16S rDNA全序列测定及系统进化研究。结果表明,CCNWGX022和CCNWGX035与中慢生根瘤菌属内参比菌株的16S rDNA相似性分别大于96.8%和98.3%,因此它们均属于中慢生根瘤菌属。  相似文献   

10.
This is the first systematic study of rhizobia associated with Albizia trees. The analyses of PCR-RFLP and sequencing of 16S rRNA genes, SDS-PAGE of whole-cell proteins and clustering of phenotypic characters grouped the 31 rhizobial strains isolated from Albizia into eight putative species within the genera Bradyrhizobium, Mesorhizobium and Rhizobium. Among these eight rhizobial species, five were unique to Albizia and the remaining three were shared with Acacia and Leucaena, two legume trees coexisting with Albizia in China. These results indicated that Albizia species nodulate with a wide range of rhizobial species and had preference of microsymbionts different from Acacia and Leucaena. The definition of four novel groups, Mesorhizobium sp., Rhizobium sp. I, Rhizobium sp. II and "R. giardinii", indicates that further studies with enlarged rhizobial population are necessary to better understand the diversity and to clarify the taxonomic relationships of Albizia-associated rhizobia.  相似文献   

11.
Thirty-five isolates of rhizobia were picked up fromRetama raetam root nodules growing in arid lands of Tunisia. A genotypic approach including PCR-RFLP of 16S rDNA and 16S–23S rDNA was used to study their diversity and their relationships with te n reference strains of rhizobia. Four distinct clusters were defined in numerical analysis of RFLP of 16S rDNA, which related at the 78% similarity level to distinct species ofMesorhizobium, Agrobacterium, Rhizobium andSinorhizobium. More greater variability was detected by analysis of Intergenic Spacers 16S–23S rDNA. The results from both methods used in this study, showed that among all newsolates only three were found to be closely related to species of the genusSinorhizobium.  相似文献   

12.
The genetic diversity among 95 isolates from Astragalus adsurgens was investigated using molecular biological methods. All of the isolates and 24 reference strains could be differentiated by AFLP, REP-, ERIC- and BOX-PCR fingerprinting analysis. By cluster analysis of the data, 31 AFLP and 38 Rep-PCR genomic groups were delineated, indicating considerable genetic diversity among the isolates. Fifty-four representative strains were further analyzed by RFLP of PCR-amplified 16S and 23S rDNA, revealing 26 rDNA genotypes among the isolates. The phylogenetic relationship of the isolates was determined by partial sequencing of 16S rRNA genes of 16 strains. The results suggest that the A. adsurgens rhizobia belong to the genera Agrobacterium, Mesorhizobium, Rhizobium and Sinorhizobium.  相似文献   

13.
Fifty-nine bacterial isolates from root nodules of the woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the central and eastern regions of China were characterized with phenotypic analysis, PCR-based 16S and 23S rRNA gene RFLP, Box PCR and 16S rRNA gene sequencing. Seven main phena were defined in numerical taxonomy, which corresponded to distinct groups within the genera Agrobacterium, Bradyrhizobium, Mesorhizobium and Rhizobium in 16S and 23S rRNA gene PCR-RFLP. The phylogenetic relationships of the 16S rRNA genes supported the grouping results of PCR-RFLP. Most of the isolates from Amorpha fruticosa were classified into two groups closely related to Mesorhizobium amorphae. Seventeen of the 21 isolates from Wisteria sinensis were identified as two groups related to Rhizobium and Agrobacterium. Six out of 10 isolates from Cercis racemosa were identified as a group related to Bradyrhizobium. Our results indicated that each of the investigated legumes nodulated mainly with one or two rhizobial groups, although isolates from different plants intermingled in some small bacterial groups. In addition, correlation between geographic origin and grouping results was found in the isolates from Amorpha fruticosa. These results revealed that the symbiotic bacteria might have been selected by both the legume hosts and the geographic factors.  相似文献   

14.
A total of fifty root nodules isolates of fast-growing and slow growing rhizobia from Pterocarpus ennaceus and Pterocarpus lucens respectively native of sudanean and sahelian regions of Senegal were characterized. These isolates were compared to representative strains of known rhizobial species. Twenty-two new isolates were slow growers and twenty-eight were fast growers. A polyphasic approach was performed including comparative total protein sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) profile analysis; 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) sequence analysis. By SDS-PAGE the slow growing isolates grouped in one major cluster containing reference strains of Bradyrhizobium sp. including strains isolated in Africa, in Brazil and in New Zealand. Most of the fast-growing rhizobia grouped in four different clusters or were separate strains related to Rhizobium and Mesorhizobium strains. The 16S rDNA and 16S-23S rDNA IGS sequences analysis showed accurately the differentiation of fast growing rhizobia among the Rhizobium and Mesorbizobium genospecies. The representative strains of slow growing rhizobia were identified as closely related to Bradyrbizobium elkanii and Bradyrhizobium japonicum. Based on 16S rDNA sequence analysis, one slow growing strain (ORS199) was phylogenetically related to Bradyrbizobium sp. (Lupinus) and Blastobacter denitrificans. This position of ORS 199 was not confirmed by IGS sequence divergence. We found no clear relation between the diversity of strains, the host plants and the ecogeographical origins.  相似文献   

15.
药用植物内生芽孢杆菌的多样性和系统发育研究   总被引:3,自引:0,他引:3  
[目的]了解药用植物内生芽孢杆菌的生物多样性.[方法]采用数值分类、16S rDNA PCR RFLP、BOX-PCR指纹图谱和16S rDNA序列分析技术对分离于几种药用植物的内生芽孢杆菌和已知参比菌株进行表型、遗传多样性及系统发育研究.[结果]供试菌株在数值分类聚类分析中在84%的相似水平上产生13个表观群.16S rDNAPCR-RFLP分析表明供试菌株表现出丰富的遗传多样性.BOX-PCR指纹图谱分析进一步证明药用植物的内生芽孢杆菌的基因组也具有多样性,聚群的结果与数值分类有较好一致性.用软件在Genbank中进行所得序列的同源性检索,并构建系统发育树.由16S rDNA序列分析可知,供试的代表菌株SCAU11与球形芽孢杆菌(Bacillus sphaericus)亲缘关系最近,SCAU78和SCAU25为枯草芽孢杆菌(Bacillus subtilis)的两个亚种,代表菌株SCAU39与巨大芽孢杆菌(Bacillus megaterium)的亲缘关系最近.[结论]研究结果表明药用植物内生芽孢杆菌具有明显的表型和遗传多样性.  相似文献   

16.
采用数值分类和16S rDNA PCR-RFLP对分离自云南省豆科植物补骨脂(Psoralea corylifolia)、葛藤(Pueraria lobata)、杭子梢(Campylotropis macrocarpa)等宿主的24株菌及10株根瘤菌参比菌株进行了研究.数值分类结果表明,在84%相似性水平上,所有的菌株可分为3群:群Ⅲ为未知菌群,群Ⅰ为慢生菌群,群Ⅱ为快生和中慢生菌群.从依据16S rDNA PCR-RFLP分析建立的树状图来看,在70%相似性水平上,所有的菌株可分为5个系统发育分支:分支Ⅰ和Ⅴ没有参比菌株,为未知分支;分支Ⅱ为Agrobacterium-Sinorhizobium-Rhizobium,分支Ⅲ为Mesorhizobium,分支Ⅳ为Bradyrhizobium.数值分类和16S rDNA PCR-RFLP的结果部分一致,有2株茵与A.tumefaciens IAM13129T聚在一起.  相似文献   

17.
采用数值分类和16S rDNA PCR-RFLP对分离自云南省豆科植物补骨脂(Psoralea corylifolia)、葛藤(Pueraria lobata)、杭子梢(Campylotropis macrocarpa)等宿主的24株菌及10株根瘤菌参比菌株进行了研究。数值分类结果表明, 在84%相似性水平上, 所有的菌株可分为3群:群Ⅲ为未知菌群, 群Ⅰ为慢生菌群, 群Ⅱ为快生和中慢生菌群。从依据16S rDNA PCR-RFLP分析建立的树状图来看, 在70%相似性水平上, 所有的菌株可分为5个系统发育分支:分支Ⅰ和Ⅴ没有参比菌株, 为未知分支; 分支Ⅱ为Agrobacterium-Sinorhizobium-Rhizobium, 分支Ⅲ为Mesorhizo- bium, 分支Ⅳ为Bradyrhizobium。数值分类和16S rDNA PCR-RFLP的结果部分一致, 有2株菌与A. tumefaciens IAM13129T聚在一起。  相似文献   

18.
Concatenated sequence analysis with 16S rRNA, rpoB and fusA genes identified a bacterial strain (IRBG74) isolated from root nodules of the aquatic legume Sesbania cannabina as a close relative of the plant pathogen Rhizobium radiobacter (syn. Agrobacterium tumefaciens ). However, DNA:DNA hybridization with R. radiobacter , R. rubi , R. vitis and R. huautlense gave only 44%, 5%, 8% and 8% similarity respectively, suggesting that IRBG74 is potentially a new species. Additionally, it contained no vir genes and lacked tumour-forming ability, but harboured a sym -plasmid containing nifH and nodA genes similar to those in other Sesbania symbionts. Indeed, IRBG74 effectively nodulated S. cannabina and seven other Sesbania spp. that nodulate with Ensifer ( Sinorhizobium )/ Rhizobium strains with similar nodA genes to IRBG74, but not species that nodulate with Azorhizobium or Mesorhizobium . Light and electron microscopy revealed that IRBG74 infected Sesbania spp. via lateral root junctions under flooded conditions, but via root hairs under non-flooded conditions. Thus, IRBG74 is the first confirmed legume-nodulating symbiont from the Rhizobium ( Agrobacterium ) clade. Cross-inoculation studies with various Sesbania symbionts showed that S. cannabina could form fully effective symbioses with strains in the genera Rhizobium and Ensifer , only ineffective ones with Azorhizobium strains, and either partially effective ( Mesorhizobium huakii ) or ineffective ( Mesorhizobium plurifarium ) symbioses with Mesorhizobium . These data are discussed in terms of the molecular phylogeny of Sesbania and its symbionts.  相似文献   

19.
A collection of rhizobia isolated from Acacia tortilis subsp. raddiana from various sites in the North and South of Sahara was analyzed for their diversity at both taxonomic and symbiotic levels. On the basis of whole cell protein (SDS-PAGE) and 16S rDNA sequence analysis, most of the strains were found to belong to the Sinorhizobium and Mesorhizobium genera where they may represent several different genospecies. Despite their chromosomal diversity, most A. tortilis Mesorhizobium and Sinorhizobium symbionts exhibited very similar symbiotic characters. Nodulation tests showed that the strains belong to the Acacia-Leucaena-Prosopis nodulation group, although mainly forming non-fixing nodules on species other than A. tortilis. Most of the strains tested responded similarly to flavonoid nod gene inducers, as estimated by using heterologous nodA-lacZ fusions. Thin layer chromatography analysis of the Nod factors synthesized by overproducing strains showed that most of the strains exhibited similar profiles. The structures of Nod factors produced by four different Sinorhizobium sp. strains were determined and found to be similar to other Acacia-Prosopis-Leucaena nodulating rhizobia of the Sinorhizobium-Mesorhizobium-Rhizobium branch. They are chitopentamers, N-methylated and N-acylated by common fatty acids at the terminal non reducing sugar. The molecules can also be 6-O sulfated at the reducing end and carbamoylated at the non reducing end. The phylogenetic analysis of available NodA sequences, including new sequences from A. tortilis strains, confirmed the clustering of the NodA sequences of members of the Acacia-Prosopis-Leucaena nodulation group.  相似文献   

20.
研究了22株代表性斜茎黄芪根瘤菌的谷氨酰胺合成酶基因多样性。首先对供试菌株进行了谷氨酰胺合成酶glnA和glnII基因扩增,结果显示从来自Mesorhizobium和Rhizobium属的多数代表菌株都可以扩增到约1kp、大小一致的glnA基因产物,而从Agrobacterium sp.的4株代表菌株未能得到glnA PCR扩增产物。基因glnII的扩增结果显示几乎从所有测试菌株都能够得到基因产物,来自Mesorhizobium septentrionale、M.temperatum和Mesorhizobium spp.的代表菌株都得到了单一的、大小约400bp~500bp的glnII PCR扩增产物,而从Agrobacterium sp.的4株代表菌株扩增得到的glnII PCR扩增产物明显不同于其它斜茎黄芪根瘤菌代表菌,它们都有一条约1 kb的特征PCR扩增产物条带,SDW052和R084还出现了另外2~3个扩增产物条带。此外,基因glnA的RFLP分析结果与我们先前的16S rRNA基因分析结果具有很好的一致性,这些结果都进一步证实了这些根瘤菌的染色体基因多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号