首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce an approach which allows one to introduce the concept of cell plasticity into models for tissue regeneration. In contrast to most of the recent models for tissue regeneration, cell differentiation is considered a gradual process, which evolves in time and which is regulated by an arbitrary number of parameters. In the current approach, cell differentiation is modelled by means of a differentiation state variable. Cells are assumed to differentiate into an arbitrary number of cell types. The differentiation path is considered as reversible, unless differentiation has fully completed. Cell differentiation is incorporated into the partial differential equations (PDEs), which model the tissue regeneration process, by means of an advection term in the differentiation state space. This allows one to consider the differentiation path of cells, which is not possible if a reaction-like term is used for differentiation. The boundary conditions, which should be specified for the general PDEs, are derived from the flux of the fully non-differentiated cells and from the irreversibility of the fully completed differentiation process. An application of the proposed model for peri-implant osseointegration is considered. Numerical results are compared with experimental data. Potential lines of further development of the present approach are proposed.  相似文献   

2.
3.
4.
5.
Abstract. A panel of monoclonal antibodies to differentiation antigens on avian erythroid cells was used to study the reprogramming of protein synthesis during erythroid differentiation at the molecular level. This panel detected five distinct cell-surface glycoproteins on immature leukemic erythroblasts, all of which were initially synthesised as smaller intracellular precursors. Two distinct in vitro differentiation systems (erythroblasts transformed by ts mutants of the erb-B and sea retroviral oncogenes, in which the synchronous terminal differentiation of CFU-E-like precursors is induced by simple elevation of temperature) were used to study cell-surface expression and the biosynthesis of each protein during erythroid cell maturation. For four glycoproteins, both cell-surface expression and biosynthesis decreased between the erythroblast and erythrocyte stages, although with widely different time courses. The fifth glycoprotein, which is reticulocyte specific on normal erythroid progenitors and is aberrantly expressed in onco-gene-transformed erythroblasts, rapidly disappeared shortly after differentiation induction but was then re-expressed on reticulocytes with the same time course as that seen during normal erythroid differentiation. This indicates that ts erb-B- and ts sea -transformed erythroblasts revert to a normal precursor phenotype before undergoing temperature-induced differentiation.  相似文献   

6.
We report here the effects of differentiation on the binding and action of transforming growth factor-beta (TGF-beta) in three lines of myogenic cells. In two lines (L6-A1 and C2) which irreversibly differentiate by fusing to form postmitotic myotubes, there is a virtual disappearance of TGF-beta binding sites as differentiation occurs. Analyses of the binding curves by the method of Scatchard indicates that there is little or no change in affinity but a substantial decrease in the number of binding sites. In L6-A1 cells, responsiveness to TGF-beta decreases in parallel to the loss of receptors. The decreases in TGF-beta binding and activity with differentiation are not paralleled by similar changes in another growth factor, insulin-like growth factor-I, which exhibits little change in binding and only a modest decrease in activity as L6-A1 myoblasts differentiate to form myotubes. In a third cell line (BC3H1), which exhibits reversible differentiation without fusion, there is little or no change in TGF-beta binding as the cells differentiate. Comparisons with reported decreases in binding of fibroblast and epidermal growth factors indicates that there are substantial differences in growth factor binding and actions as muscle cells differentiate, but it is not possible to make the simple generalization that differentiation is accompanied by a decrease in binding of all growth factors.  相似文献   

7.
8.
9.
This review describes some of the properties of retinoic acid (RA) in its functions as a locally synthesized differentiation factor for the developing nervous system. The emphasis is on the characterization of the metabolic enzymes that synthesize and inactivate RA, and which determine local RA concentrations. These enzymes create regions of autocrine and paracrine RA signaling in the embryo. One mechanism by which RA can act as a differentiation agent is through the induction of growth factors and their receptors. Induction of growth factor receptors in neural progenitor cells can lead to growth factor dependency, and the consequent developmental fate of the cell will depend on the local availability of growth factors. Because RA activates the early events of cell differentiation, which then induce context-specific differentiation programs, RA may be called a master differentiation factor.  相似文献   

10.
《Developmental biology》1987,122(1):72-77
Head activator and head inhibitor control nerve cell differentiation in hydra. Head activator acts as a stimulatory signal on nerve cell differentiation by forcing nerve cell precursors, which are arrested before final differentiation, to develop into mature nerve cells. Head inhibitor acts antagonistically by keeping the cells in their arrested state, before mitosis and terminal differentiation. This and other evidence suggest that the arrest of the nerve cell precursors occurs in the G2-phase of their cell cycle. Nerve cell differentiation can also be induced by wounding the animal. This is a consequence of an initial disinhibition caused by diffusion of head inhibitor out of the tissue and the subsequent release of head activator which then stimulates nerve cell differentiation.  相似文献   

11.
Autophagy plays important roles in self-renewal and differentiation of stem cells. Hepatic progenitor cells (HPCs) are thought to have the ability of self-renewal as well as possess a bipotential capacity, which allows them to differentiate into both hepatocytes and bile ductular cells. However, how autophagy contributes to self-renewal and differentiation of hepatic progenitor cells is not well understood. In this study, we use a well-established rat hepatic progenitor cell lines called WB-F344, which is treated with 3.75 mM sodium butyrate (SB) to promote the differentiation of WB-F344 along the biliary phenotype. We found that autophagy was decreased in the early stage of biliary differentiation, and maintained a low level at the late stage. Activation of autophagy by rapamycin or starvation suppressed the biliary differentiation of WB-F344. Further study reported that autophagy inhibited Notch1 signaling pathway, which contributed to biliary differentiation and morphogenesis. In conclusions, autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway.  相似文献   

12.
Wdr5 is developmentally expressed in osteoblasts and is required for osteoblast differentiation. Mice overexpressing Wdr5 under the control of the mouse α(1)I collagen promoter (Col I-Wdr5) display accelerated osteoblast differentiation as well as accelerated chondrocyte differentiation, suggesting that overexpression of Wdr5 in osteoblasts affects chondrocyte differentiation. To elucidate the molecular mechanism by which overexpression of Wdr5 in the perichondrium regulates chondrocyte differentiation, studies were undertaken using skeletal elements and cultured metatarsals isolated from wild-type and Col I-Wdr5 embryos. FGF18 mRNA levels were decreased in Col I-Wdr5 humeri. Furthermore, local delivery of FGF18 to the bone collar of ex vivo cultures of metatarsals attenuated the chondrocyte phenotype of the Col I-Wdr5 metatarsals. Impairing local FGF action in wild-type metatarsals resulted in a chondrocyte phenotype analogous to that of Col I-Wdr5 metatarsals implicating impaired FGF action as the cause of the phenotype observed. The expression of Twist-1, which regulates chondrocyte differentiation, was increased in Col I-Wdr5 humeri. Chromatin immunoprecipitation analyses demonstrated that Wdr5 is recruited to the Twist-1 promoter. These findings support a model in which overexpression of Wdr5 in the perichondrium promotes chondrocyte differentiation by modulating the expression of Twist-1 and FGF18.  相似文献   

13.
为避免内质网中未折叠蛋白质的过度累积,真核细胞能激活一系列信号通路来维持内质网稳态,这个过程称为内质网应激。在骨生长发育中,适宜的内质网应激有助于成骨细胞、破骨细胞和软骨细胞的生长,可以促进骨髓间充质干细胞向成骨细胞分化。而过度的内质网应激会抑制成骨分化,严重的甚至导致骨质疏松、成骨不全等相关骨病的发生。内质网应激时可激活未折叠蛋白质反应,其主要是通过PERK/eIF2α/ATF4信号通路,上调转录激活因子4(ATF4)的表达。ATF4位于许多成骨分化调节因子的下游,是促进成骨分化的关键因子,在内质网应激对成骨分化的调节中发挥重要作用。在成骨分化过程中,适宜的内质网应激能通过激活PERK信号通路,诱导ATF4表达增加,进而上调骨钙素、骨涎蛋白等成骨所必需基因的表达,促进成骨分化。过度的内质网应激会激活ATF4/CHOP促凋亡途径,并导致Bax、胱天蛋白酶等凋亡信号分子的大量产生,进而导致细胞凋亡,抑制成骨分化。由于ATF4在ERS和成骨分化中的重要作用,ATF4在骨质疏松、成骨不全等骨相关疾病的治疗中具有重要意义。本文通过综述ATF4在内质网应激调控成骨分化中的作用机制,为相关骨性疾病治疗提供理论依据。  相似文献   

14.
15.
16.
Cellular differentiation proceeds through a series of steps in which cells undergo modifications in cellular phenotype and proliferative potential. Differentiation has been extensively studied in 3T3-T mesenchymal stem cells and growth arrest, non-terminal and terminal differentiation have been identified as three distinct stages in the adipocyte differentiation of these cells. The terminal stage of differentiation is associated with irreversible loss of proliferative potential and commitment to the expression of the adipocyte phenotype. A protein has been partially purified from human plasma that can induce the transition of 3T3-T adipocytes from the non-terminal to the terminal state of differentiation. This protein, designated aproliferin, has a mol. wt of approximately 45,000 and is trypsin, acid and heat labile. Induction of terminal differentiation by aproliferin is associated with changes in the synthesis of a limited number of cellular proteins. The ability of aproliferin to induce terminal differentiation in non-terminally differentiated cells is highly specific as a wide variety of pharmacological and biochemical agents do not mimic the effects of this agent. Apoliferin may be one of an emerging class of molecules which can affect differentiation and induce irreversible changes in cell function.  相似文献   

17.
Transforming growth factor beta (TGF) is a well-known inhibitor of myogenic differentiation as well as an autocrine product of rhabdomyosarcoma cells. We studied the role of the TGF-beta autocrine loop in regulating growth and myogenic differentiation in the human rhabdomyosarcoma cell line, RD. We previously reported that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induces growth arrest and myogenic differentiation in these cells, which constitutively express muscle regulatory factors. We show that TPA inhibits the activation of secreted latent TGF-beta, thus decreasing the concentration of active TGF-beta to which the cells are exposed. This event is mediated by the TPA-induced alteration of the uPA/PAI serine-protease system. Complete removal of TGF-beta, mediated by the ectopic expression of a soluble type II TGF-beta receptor dominant negative cDNA, induces growth arrest, but does not trigger differentiation. In contrast, a reduction in the TGF-beta concentration, to a range of 0.14-0.20 x 10(-2) ng/ml (which is similar to that measured in TPA-treated cells), mimics TPA-induced differentiation. Taken together, these data demonstrate that cell growth and suppression of differentiation in rhabdomyosarcoma cells require overproduction of active TGF-beta; furthermore, they show that a 'critical' concentration of TGF-beta is necessary for myogenic differentiation to occur, whereas myogenesis is abolished below and above this concentration. By impairing the TGF-beta autocrine loop, TPA stabilizes the factor concentration within the range compatible for differentiation to occur. In contrast, in human primary muscle cells a much higher concentration of exogenous TGF-beta is required for the differentiation inhibitory effect and TPA inhibits differentiation in these cells probably through a TGF-beta independent mechanism. These data thus clarify the mechanism underlying the multiple roles of TGF-beta in the regulation of both the transformed and differentiated phenotype.  相似文献   

18.
Following treatment of mouse erythroleukemia (MEL) cells with dimethyl sulfoxide and other typical erythroid inducing agents, the profile of cellular phosphotyrosine-containing proteins was drastically altered. We found that the level of almost all of the phosphotyrosine-containing proteins was either decreased or disappeared at a very early stage of differentiation. Addition of sodium orthovanadate (Na3VO4), a specific inhibitor of phosphotyrosine phosphatases, prevented the alteration as well as erythroid differentiation. Mutant MEL cells, which are resistant to differentiation by dimethyl sulfoxide, were apparently insensitive to the alteration. These results indicate that dephosphorylation of phosphotyrosine residues in cellular proteins is coupled with a reaction(s) which is responsible for triggering differentiation of MEL cells.  相似文献   

19.
Quaking I (QKI) is a selective RNA-binding protein essential for myelination of the central nervous system. Three QKI isoforms with distinct C termini and subcellular localization, namely QKI-5, QKI-6, and QKI-7, are expressed in oligodendroglia progenitor cells (OPCs) prior to the initiation of myelin formation and implicated in promoting oligodendrocyte lineage development. However, the functional requirement for each QKI isoform and the mechanisms by which QKI isoforms govern OPC development still remain elusive. We report here that exogenous expression of each QKI isoform is sufficient to enhance differentiation of OPCs with different efficiency, which is abolished by a point mutation that abrogates the RNA binding activity of QKI. Reciprocally, small interfering RNA-mediated QKI knockdown blocks OPC differentiation, which can be partly rescued by QKI-5 and QKI-6 but not by QKI-7, indicating the differential requirement of QKI isoform function in advancing OPC differentiation. Furthermore, we found that abrogation of OPC differentiation, as a result of QKI deficiency, is not due to altered proliferation capacity or cell cycle progression. These results indicate that QKI isoforms are necessary and sufficient for promoting OPC development, which must involve direct influence of QKI on differentiation/maturation of OPCs independent of cell cycle exit, likely via regulating the expression of the target mRNAs of QKI that support OPC differentiation.  相似文献   

20.
Keratinocyte differentiation is the process of cellular maturation from a mitotic state to a terminally differentiated state during which skin builds up a tough yet soft skin barrier to protect the body. Its irreversibility also allows the shedding of excessive keratinocytes, thereby maintaining skin homeostasis and preventing skin diseases. Although the entire journey of keratinocyte differentiation is intricate and not well understood, it is known that Ras is able to block keratinocyte terminal differentiation and instead induce keratinocyte proliferation and transformation. It appears that uncontrolled proliferation actually interrupts differentiation.

However, it has been unclear whether there are any innate surveillants that would be able to induce terminal differentiation by antagonizing excessive mitotic activities. Inhibitor of nuclear factor κB kinase-α (IKKα, previously known as Chuk) emerges as a master regulator in the coordinative control of keratinocyte differentiation and proliferation and as a major tumor suppressor in human and mouse skin squamous cell carcinomas. IKKα does so largely by integrating into the epidermal growth factor receptor (EGFR)/Ras/extracellular signal-regulated kinase (Erk)/EGFR ligand pathways during mitosis and differentiation. We discuss these findings herein to extend our understanding of how IKKα-mediated terminal differentiation serves as an innate surveillant in skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号